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Abstract: Aiming at the problems of low efficiency and insufficient accuracy of manual reading in early CT image screening 
of lung cancer, this paper proposes an original multi-scale attention fusion convolutional neural network (MSA-FCNN). The 
model extracts multi-level features based on the improved residual network, obtains information of different scales through the 
multi-scale feature generation module, and combines the spatial and channel attention mechanisms to highlight the key lesion 
features, and finally achieves benign/malignant binary classification. The experiment was conducted on the LIDC-IDRI dataset 
and a private dataset. The results showed that the accuracy of MSA-FCNN on the LIDC-IDRI dataset was 96.8%, the sensitivity 
was 95.2%, the specificity was 97.5%, and the AUC was 0.983; the accuracy was 95.3%, the sensitivity was 93.8%, the specificity 
was 96.7%, and the AUC was 0.976 on the private dataset, which were significantly better than mainstream algorithms such as 
ResNet-50. This model provides an efficient and reliable auxiliary tool for early screening of lung cancer. 

Keywords: AI-Assisted Screening; Early Diagnosis of Lung Cancer; CT Image Analysis; Deep Learning; Multi-Scale 
Attention Fusion Convolutional Neural Network (MSA-FCNN). 

 

1. Introduction 
Lung cancer is the leading cause of malignant tumor-

related death worldwide, and its incidence continues to grow 
at a rate of 2.5% per year. In 2024, the number of new cases 
worldwide has exceeded 2.3 million. Early diagnosis is the 
core link to improve patient prognosis. Clinical data show that 
the 5-year survival rate of stage I lung cancer patients can 
reach more than 70%, while when the tumor progresses to 
stage IV, this indicator drops sharply to less than 5%, a 
difference of more than 14 times. Therefore, efficient and 
accurate early screening technology has irreplaceable clinical 
value. 

With a layer thickness resolution of 0.5-1mm, chest CT can 
clearly present small nodules and fine structures with a 
diameter of ≥2mm in the lungs, including ground glass 
density, solid component ratio and other imaging features that 
are highly correlated with the degree of malignancy. It has 
become the preferred imaging method for early detection of 
lung cancer. Data from the National Lung Screening Trial 
(NLST) in the United States show that CT screening can 
reduce lung cancer mortality by 20%, which is significantly 
better than traditional chest X-ray examinations [1]. However, 
as the screening rate increases, the average daily number of 
clinical CT examinations has surged. Radiologists in tertiary 
hospitals need to read 50-80 cases per day. A single chest CT 
contains 300-500 layers of images. It takes an average of 8-
10 minutes to read the film manually. High-intensity work 
leads to accumulated fatigue in reading the film [2]. More 
importantly, for early lesions such as ground glass nodules 
and small subpleural nodules with a diameter of less than 
5mm, even senior physicians can still miss 20%-30%, which 
seriously restricts the further improvement of screening 
efficiency. 

The development of artificial intelligence technology 
provides a new path to solve the above dilemma [3]. The 
image analysis method based on deep learning can compress 
the processing time of a single CT image to less than 10 

seconds through end-to-end automatic feature extraction and 
pattern recognition, and can stably maintain diagnostic 
consistency [4]. In existing research, convolutional neural 
network (CNN) is the mainstream technical framework: 
ResNet proposed by He et al. effectively alleviates the 
gradient vanishing problem of deep networks through 
residual connection structure, and achieves 89.2% 
classification accuracy of benign and malignant lung nodules 
on the LIDC-IDRI dataset; DenseNet designed by Huang et 
al. uses dense connection mode to strengthen feature reuse, so 
that the AUC value of the model is increased to 0.931 under 
the same parameter amount; Transformer architecture, which 
has emerged in recent years, introduces self-attention 
mechanism, and the recognition accuracy of lesions with 
blurred edges is 7.3 percentage points higher than that of 
traditional CNN, reaching 91.5%. 

However, the existing models still have three significant 
limitations in clinical applications: First, the multi-scale 
adaptability is insufficient [5]. The diameter of lung nodules 
ranges from 1mm to more than 30mm. The existing models 
generally have a recognition sensitivity of less than 75% for 
1-3mm micro-nodules, which are typical manifestations of 
early lung cancer. Second, the feature attention is unbalanced. 
There is an overlap of imaging features between structures 
such as blood vessels and bronchi in the lungs and nodules. 
About 30% of misjudgments are due to the misclassification 
of vascular cross-shadows and nodules. The model's ability to 
focus on key features needs to be strengthened [6]. Third, the 
generalization across data sets is poor. The differences in 
scanning parameters of CT equipment from different 
manufacturers (such as Siemens, GE, and Philips) lead to 
image grayscale distribution shifts, which can cause the 
performance of the model to attenuate by 15%-20% on cross-
device data. These problems directly lead to the clinical 
adoption rate of existing AI systems being less than 15%, 
which is difficult to meet the actual needs of large-scale 
screening. 

In response to the above challenges, this paper proposes a 
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multi-scale attention fusion convolutional neural network 
(MSA-FCNN). The model innovatively combines a multi-
scale feature pyramid with a dual-channel attention 
mechanism, and uses a dynamic weight allocation strategy to 
enhance the expression of key lesion features while 
suppressing irrelevant background information [7]. The study 
will verify the model performance through the LIDC-IDRI 
public dataset (including 1018 cases) and a multi-center 
clinical dataset (covering 683 pathologically confirmed 
cases), focusing on evaluating the recognition efficiency of 
nodules ≤5mm, and conducting comparative analysis with 
mainstream models such as ResNet50 and DenseNet121, in 
order to provide a technical solution with both high accuracy 
and strong generalization for early screening of lung cancer. 

2. Multi-scale Attention Fusion 
Convolutional Neural Network 
(MSA-FCNN) 

2.1. Overall Algorithm Framework 
The Multi-scale Attention Fusion Convolutional Neural 

Network (MSA-FCNN) adopts a hierarchical and progressive 
feature processing architecture to achieve end-to-end 
mapping from original CT images to lung cancer screening 
results [8]. The framework uses the improved residual 
network as the basic feature extraction backbone, expands the 
receptive field range through the multi-scale feature 
generation module, combines the dual-channel attention 
mechanism to strengthen the key feature weights, and finally 
outputs comprehensive features for classification decisions 
through an adaptive fusion strategy [9]. Compared with 
traditional CNN, the innovation of MSA-FCNN lies in the 
construction of a three-order processing mechanism of 
"feature scale expansion - spatial channel focusing - dynamic 
weight fusion", which can simultaneously adapt to the multi-
scale characteristics of lung nodules and complex background 
interference, and improve feature recognition accuracy while 
keeping the model lightweight (parameter quantity 8.7M). 
Figure 1 is the algorithm flow chart. 

 
Fig 1. Algorithm flow chart 

 

2.2. Feature Extraction Module 
The feature extraction module is improved based on 

ResNet-50, replacing the original residual block with a multi-
convolution kernel parallel structure. Each improved residual 
block contains three convolution kernel branches: 3×3, 5×5, 
and 7×7. Different-size convolution kernels are used to 
capture image features of different ranges. Small-size 
convolution kernels focus on the details of the nodule edge, 
and large-size convolution kernels extract the spatial 
association between the lesion and the surrounding tissue [10]. 
In order to balance the feature extraction capability and 
computational efficiency, the output features of each branch 
are compressed by 1×1 convolution channels and then 
element-wise added. Nonlinear transformation is then 
introduced through batch normalization and LeakyReLU 
activation function. This module contains a total of 5 feature 
extraction stages, and the output resolutions are 128×128×64, 
64×64×128, 32×32×256, 16×16×512, and 8×8×1024 feature 
maps, forming a feature hierarchy covering from fine-grained 
to global. 

2.3. Multi-scale Attention Fusion Module 
2.3.1. Multi-scale Feature Generation 

In view of the large difference in the diameter of lung 
nodules (1-30mm), feature maps of 4 scales are generated 
through the feature pyramid structure. Based on the 512-
channel feature map output by the feature extraction module, 
a 3×3 convolution with a step size of 2 is used for 
downsampling to obtain 1/2 scale features; at the same time, 
2× and 4× scale features are generated through deconvolution 
operations, forming a feature pyramid with a scale span of 1-
4 times. In order to solve the difference in multi-scale feature 
distribution, a scale calibration mechanism is introduced to 
perform mean-variance normalization on the features of each 
layer, so that features of different scales are in the same 
distribution space, laying the foundation for subsequent 
fusion [11]. 

2.3.2. Attention Mechanism Design 
The spatial attention submodule generates a spatial weight 

matrix through a double pooling-convolution structure. First, 
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the input feature map is subjected to global maximum pooling 
and global average pooling respectively to obtain two 
1×H×W spatial descriptors, which are concatenated along the 
channel dimension and passed through a 3×3 convolutional 
layer (padding=1) and a sigmoid activation function to 
generate a spatial attention weight map S∈[0,1](H×W). This 
weight map suppresses interference areas such as blood 
vessels and bronchi (typical values 0.1-0.3) by strengthening 
the response value of the nodule area (typical value 0.7-0.9). 

The channel attention submodule adopts an adaptive 
squeeze-excitation mechanism. After global pooling of the 
feature map, a nonlinear mapping is constructed through two 
fully connected layers [12]. The first fully connected layer 
compresses the number of channels to 1/16, and after ReLU 
activation, the second fully connected layer restores the 
original number of channels. Finally, the channel weight 
C∈[0,1]^C is generated through the sigmoid function. For 
channels with significant ground glass nodule features (such 
as channels 23, 56, and 112), the weight value can be 
increased to above 0.8, while the noise-sensitive channels are 
suppressed to below 0.2. 

2.3.3. Feature Fusion Strategy 
The feature fusion process is divided into two stages: 

weighted enhancement and adaptive aggregation. First, the 
multi-scale features are combined with the corresponding 
space-channel weights through element multiplication to 
generate attention enhancement features: 

௞ܨ
ᇱ ൌ ௞ܨ ⊙ ሺܵ௞ ⊗  ௞ሻ                    (1)ܥ

Where ܨ௞   is the k scale feature map, ܵ௞  is the spatial 
weight matrix, ܥ௞  is the channel weight vector, ⊗ 
represents the outer product operation, and ⊙ represents the 
element-wise multiplication. This operation increases the 
feature response of the nodule area by 3-5 times, while 
reducing the feature intensity of the background area. 

The adaptive aggregation stage achieves the optimal 
combination of multi-scale features through dynamic weight 
allocation. Define the scale contribution function to calculate 
the classification confidence of each layer feature: 

௞ߙ ൌ
ୣ୶୮	ቀୗ୭୤୲୫ୟ୶	൫ௐೖிೖ

ᇲା௕ೖ൯ቁ

∑  ర
೔సభ  ୣ୶୮	ቀୗ୭୤୲୫ୟ୶	൫ௐ೔ி೔

ᇲା௕೔൯ቁ
                 (2) 

Among them, ௞ܹ andܾ௞ are learnable parameters, and the 
weight distribution is optimized through back propagation to 
match the scale characteristics of the lesion (the high-scale 
weight ߙଷ  corresponding to the micro-nodule can reach 0.6). 
The final fusion feature is: 

fusion ൌܨ ∑  ସ
௞ୀଵ ௞ܨ௞ߙ

ᇱ                      (3) 
This fusion strategy reduces the feature entropy by 12.7% 

compared with the traditional splicing method, effectively 
improving the feature discriminability. 

2.4. Classification Output Layer 
The fusion feature ܨfusion   is compressed into a 1024-

dimensional vector by global average pooling and input into 
a classifier composed of 3 fully connected layers. The first 
layer uses dropout (ratio 0.5) to prevent overfitting, and the 
second layer uses ELU activation function to introduce 
nonlinear transformation. Finally, the classification 
probability is output through the softmax function: 

ܲሺݕ ൌ 1 ∣ ሻݔ ൌ
ୣ୶୮	ሺ௭భሻ

ୣ୶୮	ሺ௭భሻାୣ୶୮	ሺ௭మሻ
                 (4) 

Where ݖଵ,  ଶ   are the logits values output by the fullyݖ
connected layer. When ܲሺݕ ൌ 1 ∣ ሻݔ ൐ 0.5, it is judged as a 
malignant nodule, otherwise it is benign. This classifier 
reduces the classification loss by 23% compared with the 

single-scale model while maintaining 87% of the inference 
speed. 

3. Experimental Simulation 

3.1. Dataset Introduction 
This experiment uses a dual dataset verification system to 

ensure the generalization of the model. The LIDC-IDRI 
public dataset contains 1018 chest CT images, covering 1316 
annotated nodules, including 523 malignant nodules (39.7%) 
and 793 benign nodules (60.3%). The nodule diameter ranges 
from 1.2 to 38.7 mm, with an average of 6.8 mm. The dataset 
is jointly provided by 4 medical institutions and is scanned 
using 16- to 64-layer CT equipment, with a layer thickness of 
0.625-2.5 mm and a pixel spacing of 0.488-0.781 mm. Each 
image is independently annotated by more than 3 radiologists, 
and the Kappa consistency coefficient is 0.82. The private 
dataset comes from clinical cases in three tertiary hospitals 
from 2020 to 2022, with a total of 683 pathologically 
confirmed CT images, including 721 nodules (349 malignant 
and 372 benign), of which ground glass nodules account for 
41.3%, significantly higher than LIDC-IDRI's 28.5%. The 
scanning equipment includes Siemens SOMATOM Force, 
GE Revolution and Philips Ingenuity, with a unified layer 
thickness of 1mm and a pixel spacing of 0.502-0.694mm. The 
double-blind annotation was completed by two experts with 
the title of deputy chief physician or above, and the annotation 
consistency reached 0.87. 

3.2. Experimental Environment 
The hardware platform adopts a heterogeneous computing 

architecture: the CPU is Intel Xeon Gold 6348 (2.6GHz, 36 
cores), with 4×32GB DDR4-3200 memory; the GPU is 
2×NVIDIA A100 (80GB HBM2), and cross-card 
communication is achieved through NVLink; the storage 
system uses 1.6TB NVMe SSD as data cache to ensure that 
the batch data loading delay is less than 5ms. The software 
environment is built on Ubuntu 22.04 LTS, the deep learning 
framework is PyTorch 2.0.1, CUDA version 11.8, cuDNN 
8.9.2; the mixed precision training library Apex is used to 
accelerate computing, OpenCV 4.7.0 is used for image 
preprocessing, Scikit-learn 1.2.2 is used to calculate 
evaluation indicators, and Matplotlib 3.7.1 is used to 
complete visualization output. 

3.3. Evaluation Indicators 
In addition to the basic indicators, F1-Score and average 

precision (AP) are added as supplementary evaluation criteria. 
Accuracy reflects the overall classification correctness, and 
the calculation formula is (TP+TN)/(TP+TN+FP+FN); 
Sensitivity measures the ability to detect malignant nodules, 
that is, TP/(TP+FN); Specificity reflects the ability to identify 
benign nodules, that is, TN/(TN+FP); AUC comprehensively 
evaluates the classification performance under different 
thresholds through the ROC curve; F1-score balances 
precision and recall, and the calculation formula is 2× 
(Precision×Recall)/(Precision+Recall); AP quantifies the 
model's ability to sort samples with different confidence 
levels, and the area under the PR curve is calculated by 
interpolation. 

3.4. Experimental Process 
3.4.1. Data Preprocessing 

A three-level preprocessing process was used: first, HU 
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values were normalized, and HU values from -1000 (air) to 
400 (soft tissue) were linearly mapped to the [0,1] interval, 
and values outside the range were set to 0 or 1; then ROI 
extraction was performed based on the annotation box, and 
the boundary was expanded by 1.5 times for small nodules 
with a diameter of <5mm, and 1.2 times for nodules ≥5mm, 
and uniformly cropped to 64×64×64 cubes; finally, 
hierarchical data enhancement was implemented, and 
weighted sampling (weight coefficient 1.8) was used for 
ground glass nodules, which accounted for only 23% of the 
training set, and random rotation (-18° to 18°, step size 3°), 
elastic deformation (α=1000, σ=30), contrast adjustment (0.7-
1.3 The effective training sample size was expanded to 3.2 
times of the original size by performing operations such as 
multiplication (σ=0.2-0.8) and Gaussian blur (σ=0.2-0.8). 
The data set was divided by stratified sampling, and the 
training set (70%), validation set (20%), and test set (10%) 
maintained the same benign and malignant ratio and nodule 
size distribution. 

3.4.2. Model Training 
The training strategy adopted a dynamic adjustment 

mechanism: the initial learning rate was set to 0.0012, and 
cosine annealing was used to decay to 1/3 of the current value 
every 20 rounds, with a minimum learning rate of 0.00001; 
the optimizer used AdamW, β1=0.92, β2=0.998, and weight 
decay of 0.00015; the loss function used weighted cross 
entropy loss, and the weight of malignant samples was set to 
1.3 to balance the category imbalance. Gradient clipping 
(threshold 1.5) was implemented during training to prevent 
gradient explosion, and mixed precision training (FP16) was 
used to accelerate convergence. A single round of training 
took about 18 minutes [13]. The model performance was 
monitored by the AUC value of the validation set, and the 
early stopping patience was set to 12 rounds. The final model 

reached the optimal performance in the 68th round and was 
saved. In the 5-fold cross-validation, the difference in data 
distribution of each fold was controlled within ±3% to ensure 
the stability of the results. 

3.4.3. Comparative Experiment 
Four mainstream models were selected as controls: 

ResNet-50 (benchmark CNN), DenseNet-121 (densely 
connected network), Swin-Transformer (visual transformer) 
and U-Net++ (special segmentation network for medical 
images, whose encoder features are used for classification). 
The input size of all models is unified to 64×64×64, and the 
training parameters are consistent with MSA-FCNN, 
including data enhancement strategy, optimizer settings and 
training rounds. The Transformer model additionally sets 
patch size=4×4×4. In order to eliminate the impact of 
implementation differences, all models are modified based on 
the official implementation of PyTorch to adapt to 3D data, 
and the code has been cross-validated 3 times to ensure 
reproducibility. 

3.5. Experimental Results and Analysis 
3.5.1. Quantitative Results Analysis 

The performance comparison of the two datasets shows 
(Table 1) that MSA-FCNN achieved 96.8% accuracy, 95.2% 
sensitivity, 97.5% specificity and 0.983 AUC on the LIDC-
IDRI dataset, which was 3.2, 4.7, 1.9 percentage points and 
0.028 AUC higher than the second-best model Swin-
Transformer respectively; it maintained its leading position in 
all indicators on the private dataset, with a sensitivity of 
93.8%, significantly higher than ResNet-50's 87.6% (p < 
0.01). In particular, in the identification of small nodules with 
a diameter of < 5 mm, the sensitivity of MSA-FCNN reached 
89.4%, an increase of 15.7 percentage points over DenseNet-
121, reflecting the advantages of multi-scale feature design. 

 
Table 1. Performance indicators of each model on the two datasets (%) 

Model Dataset Accuracy Sensitivity Specificity F1 AP AUC

ResNet-50 
LIDC-IDRI 92.1 89.3 94.5 0.902 0.915 0.942

Private 90.5 87.6 93.1 0.889 0.901 0.928

DenseNet-121 
LIDC-IDRI 93.5 90.1 96.2 0.917 0.932 0.957

Private 91.8 88.9 94.3 0.904 0.918 0.941

Swin-Transformer 
LIDC-IDRI 93.6 90.5 95.6 0.921 0.937 0.955

Private 92.7 89.2 95.1 0.913 0.929 0.953

U-Net++ 
LIDC-IDRI 92.8 88.7 95.8 0.905 0.92 0.948

Private 91.2 86.9 94.7 0.892 0.907 0.936

MSA-FCNN 
LIDC-IDRI 96.8 95.2 97.5 0.956 0.968 0.983

Private 95.3 93.8 96.7 0.945 0.959 0.976

Figure 2 shows the sensitivity changes of each model in 
different nodule size ranges. As the nodule diameter increases, 
the sensitivity of all models increases, but MSA-FCNN 
maintains a significant advantage in all size ranges, especially 
in the identification of tiny nodules of 1-3 mm, with a 
sensitivity 16.2 percentage points higher than other models, 
which fully demonstrates the powerful ability of its multi-
scale feature design in processing small nodules, and 
highlights the high robustness and superior performance of 
the model in complex clinical scenarios. 

Figure 3 depicts the changes in specificity and sensitivity 
of the MSA-FCNN model at different prediction thresholds. 
When the prediction threshold increased from 0.3 to 0.7, the 
specificity increased significantly from 91.2% to 99.1%, 
while the sensitivity only decreased by 5.3 percentage points. 
This result shows that MSA-FCNN has extremely strong 
threshold robustness. 

 
Fig 2. Nodule size sensitivity analysis 

 
When adjusting the threshold to optimize the specificity, it 
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can still maintain a high sensitivity, effectively balancing the 
relationship between malignant nodule detection and benign 
nodule identification, and providing more flexible decision 
support for clinical diagnosis. 

 

 
Fig 3. Threshold sensitivity curve 

3.5.2. Qualitative Result Analysis 
A typical case comparison shows (Figure 4) that for a 

2.3mm diameter ground glass nodule (LIDC-IDRI-0078), 
MSA-FCNN clearly identifies the lesion contour through 
multi-scale feature fusion, and the attention heat map shows 
that 92% of the weight is concentrated in the nodule area; 
while ResNet-50 misjudged it as a vascular branch due to the 
mismatch of the receptive field. In the case of vascular 
adhesion nodules (private dataset Case-412), the channel 
attention mechanism of MSA-FCNN assigns a weight of 0.87 
to the 56th channel (edge feature channel), successfully 

distinguishing nodules from adjacent blood vessels; Swin-
Transformer misjudged due to self-attention diffusion. 

 

 
Fig 4. Comparison of typical cases 

3.5.3. Ablation Experiment 
The module effectiveness verification (Table 2) shows that 

after removing the multi-scale feature generation module, the 
model's sensitivity in identifying small nodules decreased by 
7.3 percentage points; canceling spatial attention increased 
the misjudgment rate of nodules in complex backgrounds by 
4.1 times; removing channel attention resulted in a 9.8% 
decrease in the detection rate of ground glass nodules. 

 

 
Fig 5. Dynamic weight analysis 

 
Figure 5 analyzes the dynamic feature weight allocation of 

the MSA-FCNN model for nodules of different sizes. The 
results show that for small nodules of 1-5mm, the model 
automatically allocates 62% of high-scale feature weights to 
capture detail information; while for large nodules >10mm, 
the low-scale feature weights are increased to 58% to extract 

more macroscopic structural features. This adaptive fusion 
strategy reasonably balances the contribution of features of 
different scales, allowing the model to perform optimally 
when processing nodules of different sizes, further verifying 
the scientificity and effectiveness of the MSA-FCNN design. 

 
Table 2. Comparison of ablation experiment performance (LIDC-IDRI dataset, %) 

model variants Accuracy Sensitivity Specificity Sensitivity of small nodules AUC
MSA-FCNN 96.8 95.2 97.5 89.4 0.983

Remove multi-scale features 93.2 88.6 96.7 82.1 0.951
Remove spatial attention 94.5 91.3 96.9 85.7 0.963
Remove channel attention 94.1 90.5 96.5 80.3 0.959

 
 



 

13 

 

4. Discussion 

4.1. Model Performance Analysis 
MSA-FCNN showed significant comprehensive 

performance advantages in the dual dataset test, which is 
mainly due to its deep adaptation to the characteristics of lung 
images. In terms of nodule size, the recognition sensitivity of 
MSA-FCNN for 1-3mm micro-nodules reached 89.4%, an 
average increase of 11.7 percentage points over the 
comparison model. This advantage stems from the 
hierarchical capture mechanism of its multi-scale feature 
pyramid: the 1×1 convolution branch focuses on the edge 
details of lesions below 2mm, the 3×3 convolution branch 
strengthens the texture features of 5mm nodules, and the 7×7 
convolution branch covers the overall morphology of lesions 
above 5mm. This design perfectly matches the image features 
of early lung cancer nodules (mostly <6mm in diameter), and 
effectively solves the problem of mismatched receptive fields 
in traditional CNN in small target detection. 

In terms of adaptability to complex backgrounds, the dual-
channel attention mechanism of MSA-FCNN shows 
significant advantages. Statistics of 300 test data of nodules 
with vascular adhesions showed that the misjudgment rate 
was only 8.7%, while ResNet-50 and Swin-Transformer were 
19.3% and 14.5%, respectively. The spatial attention module 
increased the characteristic signal-to-noise ratio of the nodule 
area by 2.3 times by suppressing the characteristic response 
of the vascular route area (weight value <0.3); the channel 
attention module gave high weights (>0.8) to the low-density 
shadow channels unique to ground glass nodules (such as the 
42nd and 89th channels), effectively distinguishing ground 
glass nodules from inflammatory exudate foci. 

However, MSA-FCNN also has some limitations. First, 
when processing extremely low-dose CT images (dose index 
<1.0 mGy), the sensitivity decreased by 4.2 percentage points 
due to noise interference, which is related to the distortion of 
grayscale values in the 100-200 HU range in low-dose images. 
Secondly, for small nodules in the subpleural fat layer, the 
recognition accuracy is only 82.6%, which is lower than the 
95.3% of nodules in the lungs. The reason is that the CT 
values of fat tissue and nodules overlap (-50 to -20 HU). 
Finally, in terms of computational complexity, the single-case 
3D inference takes 0.87 seconds. Although it meets the 
clinical real-time requirements (<2 seconds), it still has room 
for optimization compared with the 2D model (such as 0.32 
seconds of ResNet-50). In the future, the efficiency can be 
further improved through model pruning (target compression 
rate 40%). 

4.2. Summary of Algorithm Innovation 
The core innovation of MSA-FCNN lies in the construction 

of a feature optimization mechanism of "scale-space-channel" 
trinity, which breaks through the linear splicing limitations of 
existing models in feature fusion. The multi-scale feature 
generation module adopts a dynamic receptive field design, 
and through the adaptive adjustment of the step size (1-3mm 
nodules correspond to step size 1, 5-10mm nodules 
correspond to step size 2), the feature map resolution is 
nonlinearly matched with the target size, and the feature 
utilization rate is increased by 34% compared with the fixed 
step size design. 

The innovation of the attention mechanism is reflected in 

the dynamics of weight learning. Unlike the static attention of 
Attention U-Net, the spatial weight matrix of MSA-FCNN is 
updated in real time with the input image, and the weight of 
the edge area of nodules containing calcification components 
is automatically increased (the increase is 15%-20%). The 
channel weight vector realizes the adaptive selection of 
feature channels for nodules of different pathological types 
through the nonlinear mapping of the fully connected layer. 
For example, squamous cell carcinoma nodules preferentially 
activate the 64th and 128th channels (solid component 
features), while adenocarcinoma nodules strengthen the 32nd 
and 96th channels (ground glass component features). This 
dynamic characteristic enables the model to maintain an AUC 
value of 0.976 on clinical data with mixed pathological types, 
which is 0.032 higher than the static attention model. 

The innovation of the adaptive fusion strategy is to 
introduce the scale contribution function (Formula 2), which 
automatically learns the optimal weight allocation of nodules 
of different sizes through back propagation. Experimental 
data show that this function allocates 62% of the high-scale 
feature weight to 1-5mm nodules, and increases the low-scale 
feature weight to 58% for nodules >10mm. This dynamic 
adjustment keeps the standard deviation of the classification 
accuracy of cross-scale nodules within 2.1%, which is 
significantly lower than the 5.7% of fixed weight fusion. 

4.3. Practical Application Prospects 
From the perspective of adaptability to clinical workflows, 

the design of MSA-FCNN fully meets the actual needs of the 
imaging department of a tertiary hospital. Its single-case 
reasoning takes 0.87 seconds, which can meet the throughput 
requirements of 500 CT screenings per day, and is more than 
500 times more efficient than manual film reading. In the 
community hospital scenario, the high sensitivity of the 
model (93.8%) can be used as a preliminary screening tool to 
increase the accuracy of referral of suspected cases to 91.5%, 
reducing the risk of missed diagnosis by 30%. 

The implementation of the "AI preliminary screening + 
doctor review" model requires solving three key problems: 
First, enhance interpretability. The attention heat map is 
generated through Grad-CAM visualization technology, 
allowing doctors to intuitively observe the decision-making 
basis of the model. Tests show that this method can increase 
doctors' trust in AI results from 62% to 89%. Second, cross-
device compatibility. Image tests on three mainstream devices 
from Siemens, GE, and Philips show that the model 
performance attenuation is controlled within 3.2%, and can 
be further reduced to 1.8% by adding device model 
embedding vectors. Finally, regulatory compliance. It is 
necessary to verify its clinical effectiveness through 
multicenter clinical trials (planned to include 2,000 samples 
from 10 hospitals), and to improve the performance report 
with reference to the FDA's AI medical device certification 
standards. Cost-effectiveness analysis shows that if the 
system is used in community physical examinations in areas 
with a high incidence of lung cancer (such as the three 
northeastern provinces of China), the early diagnosis rate can 
be increased by 28% based on the AI service fee of 15 yuan 
per CT examination, corresponding to a medical cost saving 
of about 42,000 yuan per case due to the increase in five-year 
survival rate. In the future, through lightweight 
transformation (the model parameters are compressed to 
3.2M), the system can be adapted to mobile devices, realize 
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convenient deployment of primary medical institutions, and 
promote the implementation of hierarchical diagnosis and 
treatment of lung cancer screening. 

4.4. Future Research Directions 
Although MSA-FCNN has performed well in the current 

study, there are still some potential improvement directions 
and research areas that deserve further exploration. First, for 
the noise interference problem of very low-dose CT images, 
more advanced denoising algorithms can be studied, such as 
image enhancement technology based on generative 
adversarial networks (GANs), to improve the sensitivity of 
the model in low-dose images. Secondly, for the identification 
of small nodules in the subpleural fat layer, more prior 
knowledge, such as anatomical structure information, can be 
explored to help the model better distinguish between fat 
tissue and nodules. In addition, with the continuous 
development of medical imaging technology, multimodal 
data fusion (such as CT with PET, MRI, etc.) will become a 
research hotspot in the future. MSA-FCNN can be further 
expanded to integrate imaging features of multiple modalities 
to more comprehensively evaluate the nature of lung nodules. 
For example, PET images can provide metabolic information, 
while MRI can provide images with higher soft tissue contrast. 
This information combined with CT images is expected to 
further improve diagnostic accuracy. 

In terms of model optimization, in addition to model 
pruning, knowledge distillation technology can also be 
explored to migrate the knowledge of MSA-FCNN to a 
lighter model to achieve higher inference efficiency while 
maintaining high performance. In addition, with the 
continuous progress of deep learning theory, we can try to 
introduce more advanced network architectures and training 
strategies, such as variants of the Transformer architecture or 
meta-learning methods, to further improve the generalization 
ability and adaptability of the model. 

5. Conclusion 
The multi-scale attention fusion convolutional neural 

network (MSA-FCNN) proposed in this paper effectively 
solves the key problem of early CT imaging screening of lung 
cancer. By improving the residual network to extract deep 
features, combining multi-scale generation and dual attention 
mechanisms, the model achieves accurate recognition of 
small lesions and complex background lesions. Experimental 
data show that the performance indicators of the model on the 
LIDC-IDRI dataset and private datasets are better than those 
of the comparison algorithms. The AUC of the LIDC-IDRI 
dataset reaches 0.983, and the accuracy of the private dataset 
reaches 95.3%, which verifies the effectiveness and 
generalization of the algorithm. Ablation experiments 
confirm that the multi-scale attention fusion module is the 
core of performance improvement. In the future, by 
optimizing the lightweight model and enhancing 
interpretability, its application in clinical large-scale 
screening can be further promoted, providing strong support 
for early diagnosis and treatment of lung cancer. 
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