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Abstract: Strong-flavor baijiu (SFB), accounting for over 70% of China’s liquor production, owes its distinctive "rich cellar 
aroma and mellow sweetness" to interactions among more than 800 flavor compounds and complex microbial communities. 
Traditional production faces challenges including uncontrollable microbiota, imprecise flavor analysis, and subjective quality 
evaluation. This paper reviews the application of multi-omics technologies (flavoromics, metabolomics, metagenomics) in 
elucidating flavor formation mechanisms: flavoromics identifies key compounds (e.g., ethyl hexanoate as the primary ester); 
metabolomics decodes critical pathways (e.g., fatty acid β-oxidation in ester synthesis); metagenomics reveals functional 
microbiota (e.g., Clostridium and Lactobacillus). It further explores intelligent quality control systems integrating IoT sensors, 
machine learning (e.g., XGBoost for flavor prediction), and real-time monitoring, which have improved premium yield by 12%, 
production efficiency by 30%, and reduced labor costs by 40% in leading enterprises. Challenges include multi-omics data 
integration and high implementation costs, with future directions focusing on molecular sensory modeling, sustainability, and 
technology accessibility for small producers. This review highlights the shift from experience-based brewing to data-driven 
innovation, preserving tradition while enhancing quality and efficiency. 

Keywords: Strong-flavor Baijiu; Multi-omics; Flavor Formation; Intelligent Quality Control; Machine Learning; 
Fermentation Optimization. 

 

1. Introduction 
Strong-flavor baijiu (SFB) accounts for over 70% of 

Chinas total liquor production, with its distinctive "rich cellar 
aroma and mellow sweetness" derived from the synergistic 
interaction of more than 800 flavor compounds (Liu et al., 
2020). Traditional solid-state fermentation processes face 
three critical technical bottlenecks: 1) a complex microbial 
community comprising over 300 species of bacteria, yeasts, 
and molds that are difficult to precisely control; 2) reliance 
on traditional techniques such as GC-MS for flavor 
compound analysis, which lacks sufficient qualitative and 
quantitative precision; 3) quality evaluation that primarily 
depends on sensory assessment, leading to strong subjectivity. 
This paper systematically reviews the application of multi-
omics technologies in elucidating flavor formation 
mechanisms and proposes intelligent quality control solutions 
to drive the transformation of traditional brewing from an 
experience-based approach to a "data-driven" paradigm. 

The brewing industry has undergone significant 
technological evolution, yet challenges remain in achieving 
consistent product quality and optimizing production 
efficiency. The integration of multi-omics approaches—
encompassing flavoromics, metabolomics, and 
metagenomics—offers unprecedented opportunities to 
understand the complex biochemical processes underlying 
flavor development in SFB. These technologies enable 
researchers to identify key metabolic pathways, microbial 
interactions, and environmental factors that contribute to the 
distinctive characteristics of premium baijiu products (Jin et 
al., 2017). 

Furthermore, the implementation of intelligent quality 

control systems incorporating Internet of Things (IoT) 
sensors, machine learning algorithms, and real-time 
monitoring capabilities represents a paradigm shift toward 
Industry 4.0 principles in traditional fermentation industries. 
Such systems not only enhance product consistency and 
quality but also optimize resource utilization, reduce labor 
costs, and minimize environmental impact through precise 
process control and predictive maintenance strategies (Misra 
et al., 2020). 

2. Multi-omics Technology for 
Elucidating Flavor Formation 
Mechanisms 

2.1. Flavoromics: Precise Identification of 
Characteristic Compounds 

Technical Breakthrough: The application of 
comprehensive two-dimensional gas chromatography 
coupled with time-of-flight mass spectrometry (GC×GC-
TOFMS) in analyzing cellar fermentation liquids has 
achieved remarkable improvements in analytical precision 
and compound identification. This advanced platform 
exhibits: 

1) A 300% enhancement in separation efficiency for trace 
ester compounds, successfully detecting 237 volatile 
components compared to conventional GC-MS analysis 

2) Quantitative analysis revealing that ethyl hexanoate 
accounts for 45% of total ester content, with ethyl lactate 
(28%) and ethyl acetate (12%) forming a synergistic system 
that contributes to the characteristic flavor profile. 

The implementation of high-resolution mass spectrometry 
has revolutionized the understanding of flavor compound 
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distribution in SFB. GC×GC-TOFMS, with a peak capacity 
of 12,000 (versus 4,000 for conventional GC-MS), enables 
the detection of 237 volatile components, including 42 trace 
esters with concentrations <0.1 mg/L (Fan et al., 2021). Its 
signal-to-noise ratio (S/N=150) is five times higher than that 
of GC-MS, reducing false negatives for key odorants such as 
ethyl 2-methylbutyrate (detection limit: 0.002 mg/L versus 
0.01 mg/L in GC-MS; Wang et al., 2021). 

Sensory Correlation: Integration of electronic nose 
technology (Fox 4000) with sensory omics approaches has 
enabled the establishment of mathematical models correlating 
"compound threshold-sensory intensity" relationships. This 
innovative method successfully quantifies the material basis 
underlying traditional sensory descriptors such as "cellar 
aroma" and "aged fragrance," providing objective metrics for 
subjective quality attributes (Luo et al., 2021). 

The development of quantitative structure-activity 
relationship (QSAR) models linking molecular properties to 
sensory perception represents a significant advancement in 
flavor science. These models incorporate physicochemical 
parameters including volatility, hydrophobicity, and 
functional group characteristics to predict sensory impact. 
Machine learning algorithms, particularly artificial neural 
networks and support vector machines, have shown 
remarkable accuracy in predicting sensory scores based on 
chemical composition data, achieving correlation coefficients 
exceeding 0.85 for key flavor attributes (Viejo et al., 2018). 

2.2. Metabolomics: Decoding Biosynthetic 
Pathways 

Key Discoveries: Liquid chromatography-mass 
spectrometry (LC-MS) metabolic flux tracking has provided 
definitive evidence that fatty acid β-oxidation pathways 
predominantly govern ethyl hexanoate synthesis, contributing 
67% to the total production of this crucial flavor ester. This 
finding challenges previous assumptions about ester 
formation mechanisms and provides targets for metabolic 
engineering approaches (An et al., 2022). 

The application of stable isotope labeling techniques 
combined with high-resolution mass spectrometry has 
enabled precise tracking of carbon flux through central 
metabolic pathways. ¹³C-labeled glucose and acetate tracers 
reveal the relative contributions of glycolysis, the 
tricarboxylic acid cycle, and fatty acid metabolism to ester 
biosynthesis. Time-course studies demonstrate dynamic 
changes in metabolic flux distribution throughout 
fermentation, with early-stage carbohydrate metabolism 
transitioning to lipid-based processes during later 
fermentation phases (Sun et al., 2021). 

Molecular Mechanisms: The discovery of the fadD gene in 
Clostridium species, which encodes acyl-CoA synthetase, 
represents a crucial breakthrough in understanding ester 
biosynthesis regulation. Expression levels of this gene show 
a strong positive correlation (R² = 0.82) with ethyl hexanoate 
production, establishing a direct molecular link between 
microbial gene expression and flavor compound formation 
(Chen et al., 2019).  

Functional genomics studies utilizing CRISPR-Cas9 gene 
editing and heterologous expression systems have confirmed 
the catalytic role of FadD proteins in activating fatty acids for 
ester synthesis (Pan et al., 2022). Enzyme kinetic studies 
reveal substrate specificity patterns favoring medium-chain 
fatty acids (C6-C10), consistent with the predominance of 
corresponding ethyl esters in SFB. Site-directed mutagenesis 

experiments have identified critical amino acid residues 
responsible for substrate binding and catalytic activity, 
providing opportunities for protein engineering to enhance 
ester production. 

Dynamic Regulation: Analysis of fermentation kinetics 
reveals that lactic acid accumulation rates during the initial 
three days of fermentation correlate strongly (r = 0.78) with 
final ethyl butyrate concentrations, providing a basis for 
staged fermentation control strategies. This temporal 
relationship enables predictive modeling of final product 
quality based on early-stage process parameters (Wang et al., 
2017). 

Mathematical modeling of metabolic networks 
incorporating enzyme kinetics, substrate availability, and 
regulatory mechanisms has yielded predictive models capable 
of forecasting flavor compound concentrations with accuracy 
exceeding 90%. These models integrate multiple data streams 
including pH, temperature, substrate concentrations, and 
microbial population dynamics to provide real-time 
predictions of fermentation outcomes. 

2.3. Metagenomics: Revealing Microbial 
Community Functions 

Metagenomics deciphers the microbial "black box" of SFB 
fermentation by integrating three interrelated dimensions: 
community structure profiling, functional gene discovery, and 
ecological network construction. These layers collectively 
reveal how microbial interactions drive flavor metabolism. 

Community Structure Analysis: Metagenomic sequencing 
of aged cellar mud reveals core functional microorganisms 
including Lactobacillus (25%) and Clostridium (18%) 
species that serve as primary contributors to flavor compound 
biosynthesis. Phylogenetic analysis demonstrates distinct 
community structures in high-quality versus standard cellars, 
with specific bacterial taxa correlating with superior product 
quality (Tao et al., 2014).  

Comprehensive metagenomic assembly has enabled the 
reconstruction of complete microbial genomes, revealing 
previously unknown bacterial species endemic to traditional 
fermentation environments. Nanopore sequencing, with its 
long-read capability, has further clarified microbial 
community dynamics, showing that Lactobacillus abundance 
increases by 40% in the first week of fermentation, driving 
lactic acid accumulation (Liu et al., 2023).  

Novel Gene Discovery: Metagenomic assembly has 
identified novel esterase gene clusters (COG3474) whose 
enzymatic activity correlates significantly (p < 0.01) with 
ester formation rates. Functional annotation reveals these 
enzymes possess distinct substrate specificities compared to 
characterized esterases, suggesting specialized roles in flavor 
compound metabolism (Zhang et al., 2019). 

Biochemical characterization of recombinant esterases has 
revealed novel catalytic properties including thermostability, 
pH tolerance, and unique substrate preferences that make 
them valuable candidates for bioprocess optimization. 
Structure-function studies using X-ray crystallography and 
molecular dynamics simulations provide insights into enzyme 
mechanisms and substrate binding modes, facilitating rational 
design of improved biocatalysts. 

Network Construction: The establishment of multi-
dimensional correlation networks linking "microbial 
interactions-gene expression-flavor metabolism" has 
elucidated the dynamic equilibrium mechanisms governing 
cellar pit microecology. These networks incorporate co-
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occurrence patterns, metabolic dependencies, and temporal 
dynamics to provide a comprehensive understanding of 
community function (Bai et al., 2020). 

Systems biology approaches integrating multi-omics data 
have revealed emergent properties of microbial communities 
that cannot be predicted from individual species 
characteristics. Network analysis identifies keystone species 
that disproportionately influence community stability and 

metabolic output, providing targets for bioaugmentation 
strategies to enhance fermentation performance (Zheng et al., 
2012). 

3. Intelligent Quality Control System: 
Multi-level Collaborative Quality 
Management 

 

 
Fig 1. Performance improvements of intelligent quality control systems in SFB production 

 
Note: Metrics are normalized to traditional processes (set 

as 100%). 
Premium Liquor Yield: Percentage of products meeting 

GB/T 10781.1-2021 premium standards. 
Production Efficiency: Fermentation cycle reduction + 

output per unit area. 
Quality Consistency: Coefficient of variation (CV) of key 

flavor compounds (target CV <5%). 
Labor Cost: Total labor hours per ton of liquor. 
Energy Consumption: KWh per ton of liquor (including 

steaming and cooling). 
The implementation of intelligent quality control systems 

represents a fundamental shift from reactive to predictive 
quality management approaches. These systems integrate 
multiple technological components including sensor 
networks, data analytics platforms, and automated control 
systems to enable real-time monitoring and optimization of 
production processes. 

3.1. Data Acquisition and Processing 
Raw Material Quality Control: Near-infrared spectroscopy 

(NIRS) systems enable rapid 10-second simultaneous 
determination of moisture, starch, and protein content in 
sorghum raw materials, achieving qualification rates of 98% 
compared to 85% with traditional methods. This non-
destructive analytical approach significantly reduces quality 
control time while improving accuracy and consistency (Popa 
et al., 2019). 

Advanced chemometric models incorporating partial least 
squares regression and artificial neural networks have been 
developed to predict multiple quality parameters from NIR 
spectra. These models demonstrate excellent predictive 
performance with correlation coefficients exceeding 0.95 for 
major constituents and prediction errors below 2% for 
moisture and starch content. Regular model updating using 

locally weighted regression ensures continued accuracy 
across different harvest seasons and geographic origins. 

Fermentation Monitoring: Internet of Things (IoT) sensor 
arrays incorporating fiber-optic temperature sensors (±0.1°C 
accuracy) and electrochemical pH sensors provide minute-
level monitoring of critical fermentation parameters. Real-
time data transmission enables immediate response to process 
deviations and optimization of fermentation conditions based 
on predetermined control algorithms (Gao et al., 2020). 

Wireless sensor networks deployed throughout 
fermentation facilities enable comprehensive environmental 
monitoring including ambient temperature, humidity, air 
quality, and vibration levels. Machine learning algorithms 
analyze sensor data patterns to identify anomalies, predict 
equipment failures, and optimize energy consumption. 
Predictive maintenance models reduce unplanned downtime 
by 35% and extend equipment lifespan through proactive 
intervention strategies (Praveenchandar et al., 2022). 

Advanced Analytics: The construction of multimodal 
databases containing 1,276 characteristic parameters enables 
comprehensive process monitoring and quality prediction. 
Extreme Gradient Boosting (XGBoost) models demonstrate 
remarkable accuracy in predicting ethyl hexanoate 
concentrations with prediction errors of only 3.2%, while 
reinforcement learning systems achieve dynamic 
optimization of fermentation parameters (Dai et al., 2023). 

Deep learning architectures including convolutional neural 
networks and recurrent neural networks have been developed 
to analyze complex temporal patterns in fermentation data. 
These models integrate multiple data streams including 
chemical measurements, microbial community composition, 
and environmental parameters to provide holistic predictions 
of product quality (Zhao et al., 2023). Transfer learning 
approaches enable rapid adaptation of models to new 
fermentation conditions or product specifications with 
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minimal additional training data. 

3.2. Quality Control and Optimization 
Process Control: Mid-fermentation monitoring (day 15) 

using electronic nose technology (Alpha MOS FOX 4000) 
enables prediction of flavor deviations with 92% accuracy, 
facilitating proactive quality management. Automated 
response systems adjust cooling water flow rates (±2 L/min) 
and nutrient addition rates (±0.5%) based on real-time sensor 
feedback (Șipoș, 2020). 

Multivariate statistical process control (MSPC) techniques 
including principal component analysis and partial least 
squares have been implemented to monitor process 
performance and detect deviations from normal operating 
conditions. Control charts based on T² and Q statistics provide 
early warning of process upsets, enabling intervention before 
quality issues develop. Contribution plots identify specific 
variables responsible for deviations, facilitating targeted 
corrective actions. 

Product Quality Assurance: Combined electronic nose and 
gas chromatography-ion mobility spectrometry (GC-IMS) 
analysis achieves 100% product compliance rates, 
eliminating the release of substandard products. Intelligent 
blending systems simulate "master craftsman experience" 
through machine learning algorithms, improving product 
consistency from 75% to 92% (Luo et al., 2021). 

Artificial intelligence-powered quality control systems 
incorporate computer vision, spectroscopic analysis, and 
sensory prediction models to provide comprehensive product 
evaluation. These systems reduce quality control time by 60% 
while improving detection sensitivity for off-flavors and 
contamination. Automated decision-making algorithms 
determine appropriate corrective actions including blending 
recommendations, process adjustments, and product 
disposition. 

4. Industrial Applications and 
Practical Validation 

4.1. Leading Enterprise Case Studies 
Luzhou Laojiao: The deployment of a multi-omics 

intelligent system across 50 fermentation pits (2021-2023) 
integrates: 1) metagenomic sequencing (Illumina NovaSeq) 
for real-time Lactobacillus monitoring; 2) LC-MS-based 
metabolomics to track fatty acid flux; 3) AI-driven 
pH/temperature control (via 200+ IoT sensors). This 
integration resulted in premium liquor yield improvements 
from 65% to 77% (a 12% increase in high-value product 
output), with 98% of batches meeting "ester content >3.5 g/L" 
standards (versus 72% in 2020). Quality control cycle time 
reductions of 35% have generated annual labor cost savings 
exceeding 2 million yuan through reduced sensory evaluation 
requirements (Zhao et al., 2023).  

Comprehensive process optimization incorporating real-
time monitoring, predictive analytics, and automated control 
has transformed traditional craft-based production into a data-
driven manufacturing system. Digital twin technology 
enables virtual process optimization and scenario planning, 
reducing the need for physical experimentation and 
accelerating product development cycles. Knowledge 
management systems capture and formalize expert 
knowledge, ensuring consistency across production teams 
and facilities. 

Wuliangye: Fermentation monitoring systems have 

reduced workshop environmental fluctuations by ±15%, 
improving production efficiency by 30% through enhanced 
process stability. The establishment of the industrys first 
comprehensive flavor compound database supports 
standardized production of five core product lines, ensuring 
consistent quality across different production batches and 
facilities (Gao et al., 2020). 

Advanced data analytics platforms integrate production 
data, quality measurements, and market feedback to provide 
comprehensive business intelligence. Predictive models 
forecast demand, optimize inventory levels, and support 
strategic planning for product development and market 
expansion. Supply chain optimization algorithms minimize 
raw material costs while ensuring consistent quality and 
availability. 

4.2. Key Performance Indicators Comparison 
The following table demonstrates the significant 

improvements achieved through intelligent system 
implementation across multiple performance metrics: 

 
Table 1. Traditional Processes vs. Intelligent Systems: Comparative 

Analysis of Production Metrics and Performance Enhancement 

Metric Traditional 
Process 

Intelligent 
System Improvement 

Premium 
Liquor Yield 

Rate 
65% 77% +12% 

Production 
Efficiency 100% 130% +30% 

Quality 
Consistency 75% 100% +25% 

Labor Cost 100% 60% -40% 

Energy 
Consumption 100% 85% -15% 

 
These improvements demonstrate the transformative 

potential of intelligent manufacturing systems in traditional 
fermentation industries. Enhanced yield rates directly impact 
profitability, while improved efficiency and reduced costs 
provide competitive advantages in increasingly demanding 
markets. Quality consistency improvements ensure customer 
satisfaction and brand reputation, while reduced 
environmental impact supports sustainability objectives 
(Zhang et al., 2023). 

5. Challenges and Future Development 
Directions 

5.1. Immediate Technical Bottlenecks 
5.1.1. Multi-omics Data Heterogeneity 

Multi-omics datasets (e.g., 10⁶+ microbial genes in 
metagenomics vs. 10³+ metabolites in metabolomics) exhibit 
vast differences in dimension and noise, leading to biased 
integration. Current tools (e.g., PCA-based fusion) fail to 
preserve biological relevance, with average accuracy 
dropping by 23% in cross-omics prediction models (Li et al., 
2022). 
5.1.2. Standardization Gaps 

Flavor evaluation lacks unified metrics: 37% of studies 
define "high-quality SFB" by ester content alone, while others 
include sensory scores, causing inconsistent data 
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interpretation (Zhang et al., 2019). Harmonization of 
analytical methods, quality specifications, and safety 
standards is critical for enabling consistent product quality 
and facilitating international trade. 

5.2. Economic Strategies for Accessibility 
Cost Reduction Initiatives: The development of lightweight 

sensor systems achieving 60% cost reductions makes 
intelligent monitoring accessible to smaller producers with 
limited capital resources. Modular system designs 
incorporating "basic package + customization package" 
approaches enable scalable implementation based on specific 
production requirements and budget constraints (Popa et al., 
2019). 

Technology Accessibility: Cloud-based software-as-a-
service (SaaS) models provide access to advanced analytics 
capabilities without requiring significant upfront investments 
in computing infrastructure (Misra et al., 2020). Shared 
service platforms enable smaller producers to access 
sophisticated analytical capabilities through cooperative 
arrangements with larger enterprises or specialized service 
providers. 

5.3. Future Trends and Long-term Vision 
Molecular Sensory Modeling: The development of flavor 

compound-human perception molecular docking models will 
enable precise prediction of sensory attributes based on 
chemical composition. These models incorporate receptor 
binding affinities, neural response patterns, and cognitive 
processing mechanisms to provide a comprehensive 
understanding of flavor perception mechanisms (Viejo et al., 
2018). 

Environmental Sustainability: Carbon footprint tracking 
systems enable comprehensive assessment of environmental 
impacts throughout the production lifecycle, supporting green 
certification programs and sustainable manufacturing 
initiatives (Zhang et al., 2023). Life cycle assessment 
methodologies quantify resource consumption, waste 
generation, and environmental emissions, identifying 
opportunities for improvement and optimization. 

Circular economy principles promote waste minimization, 
resource recovery, and energy efficiency throughout the 
production system. Biogas generation from fermentation 
residues provides renewable energy sources, while spent 
grains find applications in animal feed and soil amendments. 
Water recycling and treatment systems minimize 
environmental impact while reducing operating costs. 

6. Conclusion and Future Prospects 
The deep integration of multi-omics technologies with 

intelligent quality control systems is fundamentally reshaping 
the production paradigm of SFB manufacturing. Through 
systematic analysis of the "microorganism-metabolite-
sensory attribute" trinity relationship, traditional 
craftsmanship has been innovated while leveraging digital 
technologies to enhance quality and efficiency in 
conventional processes. Current technological 
implementations have demonstrated significant benefits in 
leading enterprises, yet challenges remain in adapting these 
systems for small and medium-sized producers, achieving 
cross-regional flavor standardization, and implementing 
sustainable brewing practices. 

The transformation from traditional craft-based production 
to data-driven manufacturing represents more than 

technological advancement—it embodies a fundamental shift 
in how knowledge is captured, transmitted, and applied in 
traditional industries. Machine learning algorithms now 
encode centuries of accumulated brewing wisdom while 
enabling continuous optimization based on objective data 
rather than subjective experience alone. This democratization 
of expertise ensures that high-quality production capabilities 
can be maintained and replicated across different facilities 
and operators. 

Future developments incorporating single-cell sequencing, 
digital twin technologies, and advanced process control 
systems promise to establish more resilient and adaptive 
intelligent brewing platforms. Single-cell analysis will reveal 
previously hidden microbial interactions and metabolic 
capabilities, enabling targeted interventions to optimize 
fermentation performance. Digital twin systems will enable 
virtual experimentation and optimization, reducing 
development costs and accelerating innovation cycles. 

The integration of artificial intelligence with traditional 
fermentation processes extends beyond mere automation to 
create truly intelligent systems capable of learning, adapting, 
and optimizing performance over time. These systems will 
continuously evolve through machine learning algorithms 
that analyze vast datasets encompassing production 
parameters, quality measurements, market feedback, and 
environmental conditions. 

Furthermore, the application of these advanced 
technologies provides a demonstration pathway for the 
modernization transformation of Chinas traditional industries. 
The success achieved in SFB production serves as a model for 
other fermented food and beverage sectors, including soy 
sauce, vinegar, and traditional Chinese medicine production. 
The principles of multi-omics analysis, intelligent monitoring, 
and predictive control can be adapted and applied across 
diverse manufacturing sectors to achieve similar 
improvements in quality, efficiency, and sustainability. 

The global market for traditional fermented products 
continues to expand, driven by growing consumer 
appreciation for authentic flavors and artisanal quality. 
Intelligent manufacturing systems enable traditional 
producers to scale production while maintaining the 
distinctive characteristics that define premium products. This 
technology-enabled preservation and enhancement of 
traditional craftsmanship ensures the continued vitality and 
competitiveness of cultural heritage industries in the modern 
global economy. 

As we look toward the future, the convergence of 
biotechnology, artificial intelligence, and traditional 
fermentation science promises unprecedented opportunities 
for innovation and optimization. The foundation established 
through current multi-omics and intelligent control research 
provides a robust platform for continued advancement, 
ensuring that traditional Chinese fermentation industries 
remain at the forefront of technological innovation while 
preserving their cultural heritage and distinctive product 
characteristics. 
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