Uncovering Molecular Mechanisms of Mechanical Force Stimulation on Bone Tissue: A Bioinformatics Approach
DOI:
https://doi.org/10.54097/5wpdj470Keywords:
Mechanical Force Stimulation, Gene Co-expression Network Analysis, Bone TissueAbstract
This study employed multiple bioinformatics approaches to uncover the potential molecular mechanisms underlying the effects of mechanical force stimulation on bone tissue. RNA sequencing data from 132 cortical bone samples were initially retrieved from the SRA database and subjected to quality control, sequence alignment, and expression matrix generation as preprocessing steps. Subsequently, WGCNA was applied for gene co-expression network analysis, followed by the selection of approximately 3,500 genes for further investigation and the exclusion of outliers. Clustering and correlation analyses revealed sets of genes highly associated with mechanical force stimulation. To gain insight into the functional characteristics of these genes, PPI network construction and GO and KEGG enrichment analyses were performed. Results indicated distinct functional properties of different modules under various conditions. For instance, genes within the MEsalmon module were mainly associated with actin cytoskeleton and calmodulin in response to mechanical force stimulation; whereas genes within the MEbrown module, when considering growth plates and other skeletal regions, primarily involved ribosomal proteins and energy metabolism. With prolonged treatment time, genes within the MEblack module exhibited increased energy metabolic activity. These findings suggest that mechanical force stimulation can alter the expression levels of specific genes in bone tissue, thereby affecting their biological functions. This study provides a new perspective on how mechanical force stimulation regulates bone tissue and may have positive implications for therapeutic strategies in fracture healing and bone diseases.
Downloads
References
Cai F, Yusufu A, Liu K, et al. High-fat diet causes undesirable bone regeneration by altering the bone marrow environment in rats. Front Endocrinol (Lausanne). 2023;14:1088508. doi:10. 3389/ fendo.2023.1088508.
Niemeyer F, Claes L, Ignatius A, Meyers N, Simon U. Simulating lateral distraction osteogenesis. PLoS One. 2018; 13(3): e0194500. doi:10.1371/journal.pone.0194500.
Shilnikov V, Denisov A, Masueva K. The optimization of the length of the lower limbs after hip arthroplasty. Int Orthop. 2019; 43(11):2485-2490. doi:10.1007/s00264-019-04395-x.
Brazill JM, Beeve AT, Craft CS, Ivanusic JJ, Scheller EL. Nerves in Bone: Evolving Concepts in Pain and Anabolism. J Bone Miner Res. 2019;34(8):1393-1406. doi:10.1002/ jbmr. 3822.
Huang C, Holfeld J, Schaden W, Orgill D, Ogawa R. Mechanotherapy: revisiting physical therapy and recruiting mechanobiology for a new era in medicine. Trends Mol Med. 2013;19(9):555-564. doi:10.1016/j.molmed.2013.05.005.
Durham JN, King JW, Robinson QC, Trojan TM. Long-term skeletodental stability of mandibular symphyseal distraction osteogenesis: Tooth-borne vs hybrid distraction appliances. Angle Orthod. 2017;87(2):246-253. doi:10.2319/022916-175. 1.
Chlebek C, Moore JA, Ross FP, van der Meulen MCH. Molecular Identification of Spatially Distinct Anabolic Responses to Mechanical Loading in Murine Cortical Bone. J Bone Miner Res. 2022;37(11):2277-2287. doi:10.1002/ jbmr. 4686.
Martin FJ, Amode MR, Aneja A, et al. Ensembl 2023. Nucleic Acids Res. 2023;51(D1):D933-D941. doi:10.1093/ nar/ gkac 958.
Chen S. Ultrafast one‐pass FASTQ data preprocessing, quality control, and deduplication using fastp. iMeta. 2023;2(2):e107. doi: 10.1002/imt2.107.
Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15-21. doi:10.1093/bioinformatics/bts635.
Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011; 12:323. doi:10.1186/1471-2105-12-323.
R Core Team. R: A Language and Environment for Statistical Computing. Published online 2023. https://www.R-project.org/.
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. doi:10.1186/s13059-014-0550-8.
Langfelder P, Horvath S. Fast R Functions for Robust Correlations and Hierarchical Clustering. J Stat Softw. 2012; 46 (11):i11.
Szklarczyk D, Kirsch R, Koutrouli M, et al. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023;51(D1):D638-D646. doi:10. 1093/nar/gkac1000.
Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 2014;8 Suppl 4(Suppl 4): S11. doi:10.1186/1752-0509-8-S4-S11.
Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498-2504. doi:10.1101/ gr.1239303.
Wu T, Hu E, Xu S, et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation (Camb). 2021;2(3):100141. doi: 10.1016/j.xinn.2021.100141.
Du GQ, Gong ZH, Liang B, et al. Concentration Changes of Peripheral Blood Mesenchymal Stem Cells of Sprague Dawley Rats during Distraction Osteogenesis. Orthop Surg. 2021;13(2): 623-631. doi:10.1111/os.12823.
Ou S, Xu C, Yang Y, et al. Transverse Tibial Bone Transport Enhances Distraction Osteogenesis and Vascularization in the Treatment of Diabetic Foot. Orthop Surg. 2022;14(9):2170-2179. doi:10.1111/os.13416.
Salhotra A, Shah HN, Levi B, Longaker MT. Mechanisms of bone development and repair. Nat Rev Mol Cell Biol. 2020; 21 (11): 696-711. doi:10.1038/s41580-020-00279-w.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.