Neutrophil Activation and Maternal Plasma Exosomal miR-301b-3p Decrease in Patients with Preeclampsia
DOI:
https://doi.org/10.54097/gtmyw727Keywords:
Hypertensive Disorders of Pregnancy, Preeclampsia, Plasma Exosomes microRNA, qRT-PCRAbstract
Background: To evaluate the diagnostic value of circulating plasma exosomal miR-301b-3p and neutrophils (NE#) for preeclampsia (PE). Methods: The study cohort consisted of pregnant women with Hypertensive disorders of pregnancy (HDP) who were selected from Guangdong Women and Children Hospital between January 2017 and November 2017. A total of 80 cases with gestational hypertension (GH n=31) and preeclampsia (PE n=49) were chosen at random for each group. Furthermore, a group of healthy pregnant women was chosen as the control group (Control n=83). Quantitative reverse-transcription PCR (qRT-PCR) was used to detect the relative expression of miR-301b-3p in exosomes found in maternal plasma. Results: The antenatal Control group had higher miR-301b-3p expression levels than the GH and PE groups (P <0.05). The ROC curve analysis indicates a predictive value for case groups (P <0.05). The Pearson correlation analysis indicates an inverse correlation between miR-301b-3p levels and illness severity in pathological patients (P <0.05). Conclusion: miR-301b-3p is closely associated with the severity of vascular inflammation in PE.
Downloads
References
Sharma, G., Hays, A. G. & Blumenthal, R. S. Can We Reduce Premature Mortality Associated With Hypertensive Disorders of Pregnancy?: A Window of Opportunity. J Am Coll Cardiol 77,1313-1316, doi: 10.1016/j.jacc.2021.01.021 (2021).
Rana, S., Lemoine, E., Granger, J. P. & Karumanchi, S. A. Preeclampsia: Pathophysiology, Challenges, and Perspectives. Circ Res 124, 1094-1112, doi:10.1161/ CIRCRESAHA. 118. 313276 (2019).
Ford, N. D. et al. Hypertensive Disorders in Pregnancy and Mortality at Delivery Hospitalization - United States, 2017-2019. MMWR Morb Mortal Wkly Rep 71, 585-591, doi:10. 15585/ mmwr.mm7117a1 (2022).
Aplin, J. D., Myers, J. E., Timms, K. & Westwood, M. Tracking placental development in health and disease. Nat Rev Endocrinol 16, 479-494, doi:10.1038/s41574-020-0372-6 (2020).
Khosla, K. et al. Long-Term Cardiovascular Disease Risk in Women After Hypertensive Disorders of Pregnancy: Recent Advances in Hypertension. Hypertension 78, 927-935, doi:10. 1161/HYPERTENSIONAHA.121.16506 (2021).
Qu, H. & Khalil, R. A. Vascular mechanisms and molecular targets in hypertensive pregnancy and preeclampsia. Am J Physiol Heart Circ Physiol 319, H661-H681, doi:10.1152/ ajpheart. 00202.2020 (2020).
Bacon, S. et al. Can placental growth factors explain birthweight variation in offspring of women with type 1 diabetes? Diabetologia 64, 1527-1537, doi:10.1007/s00125-021-05438-y (2021).
Wang, G. et al. Contribution of placental 11beta-HSD2 to the pathogenesis of preeclampsia. FASEB J 34, 15379-15399, doi:10.1096/fj.202001003RR (2020).
Ghafouri-Fard, S. et al. Exploring the role of non-coding RNAs in autophagy. Autophagy, 1-22,doi:10. 1080/ 15548627. 2021. 1883881 (2021).
Aryan, L., Medzikovic, L., Umar, S. & Eghbali, M. Pregnancy-associated cardiac dysfunction and the regulatory role of microRNAs. Biol Sex Differ 11, 14, doi:10.1186/ s13293-020-00292-w (2020).
Murugesan, S. et al. Role of exosomal microRNA signatures: An emerging factor in preeclampsia-mediated cardiovascular disease. Placenta 103, 226-231, doi:10.1016/ j.placenta. 2020. 10.033 (2021).
Frazier, S., McBride, M. W., Mulvana, H. & Graham, D. From animal models to patients: the role of placental microRNAs, miR-210, miR-126, and miR-148a/152 in preeclampsia. Clin Sci (Lond) 134, 1001-1025, doi:10.1042/ CS20200023 (2020).
Li, K. et al. Acute Exposure of Atmospheric Ultrafine Particles Induced Inflammation Response and Dysregulated TGFbeta/ Smads Signaling Pathway in ApoE(-/-) Mice. Cardiovasc Toxicol 21, 410-421, doi:10.1007/s12012-021-09633-6 (2021).
Li, W. et al. Ferroptotic cell death and TLR4/Trif signaling initiate neutrophil recruitment after heart transplantation. J Clin Invest 129, 2293-2304, doi:10.1172/JCI126428 (2019).
Liu, D. et al. Placenta-derived IL-32beta activates neutrophils to promote preeclampsia development. Cell Mol Immunol 18, 979-991, doi:10.1038/s41423-021-00636-5 (2021).
Miller, D. et al. Cellular immune responses in the pathophysiology of preeclampsia. J Leukoc Biol 111, 237-260, doi:10.1002/JLB.5RU1120-787RR (2022).
Barnes, J. N. et al. Cerebrovascular Reactivity and Vascular Activation in Postmenopausal Women With Histories of Preeclampsia. Hypertension 71, 110-117, doi:10.1161/ HYPERTENSIONAHA. 117.10248 (2018).
Ozdemirci, S. et al. Predictivity of mean platelet volume in severe preeclamptic women. Hypertens Pregnancy 35, 474-482, doi:10.1080/10641955.2016.1185113 (2016).
Chiu, C. P. H. et al. Prediction of spontaneous preterm birth and preterm prelabor rupture of membranes from maternal factors, obstetric history and biomarkers of placental function at 11-13 weeks. Ultrasound Obstet Gynecol, doi:10.1002/ uog. 24917 (2022).
Licini, C. et al. Pre-eclampsia predictive ability of maternal miR-125b: a clinical and experimental study. Transl Res 228, 13-27, doi: 10.1016/j.trsl.2020.07.011 (2021).
Rolnik, D. L. et al. ASPRE trial: performance of screening for preterm pre-eclampsia. Ultrasound Obstet Gynecol 50, 492-495, doi:10.1002/uog.18816 (2017).
Cheng, Y. et al. First trimester screening for pre-eclampsia in Chinese pregnancies: case-control study. BJOG 125, 442-449, doi:10.1111/1471-0528.14970 (2018).
Zhu, J., Zhang, J., Syaza Razali, N., Chern, B. & Tan, K. H. Mean arterial pressure for predicting preeclampsia in Asian women: a longitudinal cohort study. BMJ Open 11, e046161, doi:10.1136/bmjopen-2020-046161 (2021).
Zhou, S. L. et al. A Positive Feedback Loop Between Cancer Stem-Like Cells and Tumor-Associated Neutrophils Controls Hepatocellular Carcinoma Progression. Hepatology 70, 1214-1230, doi:10.1002/hep.30630 (2019).
Li, P. et al. microRNA-301b-3p downregulation underlies a novel inhibitory role of long non-coding RNA MBNL1-AS1 in non-small cell lung cancer. Stem Cell Res Ther 10, 144, doi:10.1186/s13287-019-1235-8 (2019).
Chappell, L. C., Cluver, C. A., Kingdom, J. & Tong, S. Pre-eclampsia. The Lancet 398, 341-354, doi:10.1016/s0140-6736(20)32335-7 (2021).
Ives, C. W., Sinkey, R., Rajapreyar, I., Tita, A. T. N. & Oparil, S. Preeclampsia-Pathophysiology and Clinical Presentations: JACC State-of-the-Art Review. J Am Coll Cardiol 76, 1690-1702, doi: 10.1016/j.jacc.2020.08.014 (2020).
Force, U. S. P. S. T. et al. Aspirin Use to Prevent Preeclampsia and Related Morbidity and Mortality: US Preventive Services Task Force Recommendation Statement. JAMA 326, 1186-1191, doi:10.1001/jama.2021.14781 (2021).
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.