Progress in PGK1 in Prostate Cancer

Authors

  • Zhao Lu
  • Lize Su
  • Rong Qiu
  • Meiqiu Huang
  • Minyu Huang

DOI:

https://doi.org/10.54097/zta8d431

Keywords:

PGK1, Prostate Cancer, Phosphoglycerol Kinase 1, Glycolysis

Abstract

Phosphoglycerol kinase 1 (PGK1) is the first key metabolic enzyme that produces ATP during glycolysis and is involved in the glycolytic pathway of prostate cancer. PGK 1 can not only act as a metabolic enzyme to affect tumor growth, but also affect the gene expression, energy metabolism, molecular regulation and other processes of tumor cells through its non-metabolic enzyme function, and then mediate the growth, migration and invasion of tumors, and aggravate the biological characteristics of malignant cancer cells. In this review, we reviewed the structure and function of PGK1 and its relationship with prostate cancer to clarify the important role of PGK1 in the progression of advanced adenoma and provide a theoretical basis for targeting PGK1 for drug development.

Downloads

Download data is not yet available.

References

[1] Zhang Z, Wang W, Kong P, Feng K, Liu C, Sun T, Sang Y, Duan X, Tao Z, Liu W. New insights into lipid metabolism and prostate cancer (Review). Int J Oncol. 2023 Jun;62(6):74. doi: 10.3892/ijo.2023.5522. Epub 2023 May 19. PMID: 37203395; PMCID: PMC10198711.

[2] Cardoso HJ, Carvalho TMA, Fonseca LRS, Figueira MI, Vaz CV, Socorro S. Revisiting prostate cancer metabolism: From metabolites to disease and therapy. Med Res Rev. 2021 May;41(3):1499-1538. doi: 10.1002/med.21766. Epub 2020 Dec 4. PMID: 33274768.

[3] Zhang K, Sun L, Kang Y. Regulation of phosphoglycerate kinase 1 and its critical role in cancer. Cell Commun Signal. 2023 Sep 18;21(1):240. doi: 10.1186/s12964-023-01256-4. PMID: 37723547; PMCID: PMC10506215.

[4] Yi J, Luo X, Huang W, Yang W, Qi Y, He J, Xie H. PGK1 is a potential biomarker for early diagnosis and prognosis of hepatocellular carcinoma. Oncol Lett. 2024 Jan 19;27(3):109. doi: 10.3892/ol.2024.14242. PMID: 38304170; PMCID: PMC10831403.

[5] Blomme A, Peter C, Mui E, Rodriguez Blanco G, An N, Mason LM, Jamieson LE, McGregor GH, Lilla S, Ntala C, Patel R, Thiry M, Kung SHY, Leclercq M, Ford CA, Rushworth LK, McGarry DJ, Mason S, Repiscak P, Nixon C, Salji MJ, Markert E, MacKay GM, Kamphorst JJ, Graham D, Faulds K, Fazli L, Gleave ME, Avezov E, Edwards J, Yin H, Sumpton D, Blyth K, Close P, Murphy DJ, Zanivan S, Leung HY. THEM6-mediated reprogramming of lipid metabolism supports treatment resistance in prostate cancer. EMBO Mol Med. 2022 Mar 7;14(3):e14764. doi: 10.15252/emmm.202114764. Epub 2022 Jan 11. PMID: 35014179; PMCID: PMC8899912.

[6] Luo Y, Yu J, Lin Z, Wang X, Zhao J, Liu X, Qin W, Xu G. Metabolic characterization of sphere-derived prostate cancer stem cells reveals aberrant urea cycle in stemness maintenance. Int J Cancer. 2024 Aug 15;155(4):742-755. doi: 10.1002/ijc. 34967. Epub 2024 Apr 22. PMID: 38647131.

[7] Tian T, Leng Y, Tang B, Dong X, Ren Q, Liang J, Liu T, Liu Y, Feng W, Liu S, Zhou Y, Zhao H, Shen L. The oncogenic role and regulatory mechanism of PGK1 in human non-small cell lung cancer. Biol Direct. 2024 Jan 2;19(1):1. doi: 10.1186/s13062-023-00448-9. PMID: 38163864; PMCID: PMC10759362.

[8] Fermo E, Bianchi P, Chiarelli LR, Maggi M, Mandarà GM, Vercellati C, Marcello AP, Barcellini W, Cortelezzi A, Valentini G, Zanella A. A new variant of phosphoglycerate kinase deficiency (p.I371K) with multiple tissue involvement: molecular and functional characterization. Mol Genet Metab. 2012 Aug;106(4):455-61. doi: 10.1016/j.ymgme.2012.05.015. Epub 2012 May 30. PMID: 22705348.

[9] Serimbetov Z, Baxter NJ, Cliff MJ, Waltho JP. 1H, 15N, 13C backbone resonance assignments of human phosphoglycerate kinase in a transition state analogue complex with ADP, 3-phosphoglycerate and magnesium trifluoride. Biomol NMR Assign. 2017 Oct;11(2):251-256. doi: 10.1007/s12104-017-9758-3. Epub 2017 Sep 2. PMID: 28866776; PMCID: PMC5594045.

[10] Woike D, Wang E, Tibbe D, Hassani Nia F, Failla AV, Kibæk M, Overgård TM, Larsen MJ, Fagerberg CR, Barsukov I, Kreienkamp HJ. Mutations affecting the N-terminal domains of SHANK3 point to different pathomechanisms in neurodevelopmental disorders. Sci Rep. 2022 Jan 18;12(1):902. doi: 10.1038/s41598-021-04723-5. PMID: 35042901; PMCID: PMC8766471.

[11] Mongellaz C, Vicente R, Noroski LM, Noraz N, Courgnaud V, Chinen J, Faria E, Zimmermann VS, Taylor N. Combined immunodeficiency caused by pathogenic variants in the ZAP70 C-terminal SH2 domain. Front Immunol. 2023 May 29;14:1155883. doi: 10.3389/fimmu.2023.1155883. PMID: 37313400; PMCID: PMC10258307.

[12] Danshina PV, Geyer CB, Dai Q, Goulding EH, Willis WD, Kitto GB, McCarrey JR, Eddy EM, O'Brien DA. Phosphoglycerate kinase 2 (PGK2) is essential for sperm function and male fertility in mice. Biol Reprod. 2010 Jan;82(1):136-45. doi: 10.1095/biolreprod.109.079699. Epub 2009 Sep 16. PMID: 19759366; PMCID: PMC2802118.

[13] Morales-Briceño H, Fung VSC. Enhancement of glycolysis: A potential disease-modifying strategy for Parkinson's disease. Mov Disord. 2020 Jan;35(1):81. doi: 10.1002/mds.27934. Epub 2019 Nov 29. PMID: 31782816.

[14] Tan KN, Avery VM, Carrasco-Pozo C. Metabolic Roles of Androgen Receptor and Tip60 in Androgen-Dependent Prostate Cancer. Int J Mol Sci. 2020 Sep 10;21(18):6622. doi: 10.3390/ijms21186622. PMID: 32927797; PMCID: PMC 7555377.

[15] Xia L, Sun J, Xie S, Chi C, Zhu Y, Pan J, Dong B, Huang Y, Xia W, Sha J, Xue W. PRKAR2B-HIF-1α loop promotes aerobic glycolysis and tumour growth in prostate cancer. Cell Prolif. 2020 Nov;53(11):e12918. doi: 10.1111/cpr.12918. Epub 2020 Oct 7. PMID: 33025691; PMCID: PMC7653268.

[16] Luo Y, Yang J, Zhang L, Tai Z, Huang H, Xu Z, Zhang H. Phosphoglycerate kinase (PGK) 1 succinylation modulates epileptic seizures and the blood-brain barrier. Exp Anim. 2023 Nov 9;72(4):475-489. doi: 10.1538/expanim.23-0019. Epub 2023 Jun 1. PMID: 37258131; PMCID: PMC10658094.

[17] Huang Z, Tian Z, Zhao Y, Zhu F, Liu W, Wang X. MAPK Signaling Pathway Is Essential for Female Reproductive Regulation in the Cabbage Beetle, Colaphellus bowringi. Cells. 2022 May 10;11(10):1602. doi: 10.3390/cells11101602. PMID: 35626638; PMCID: PMC9140119.

[18] Li X, Jiang Y, Meisenhelder J, Yang W, Hawke DH, Zheng Y, Xia Y, Aldape K, He J, Hunter T, Wang L, Lu Z. Mitochondria-Translocated PGK1 Functions as a Protein Kinase to Coordinate Glycolysis and the TCA Cycle in Tumorigenesis. Mol Cell. 2016 Mar 3;61(5):705-719. doi: 10.1016/j.molcel. 2016. 02.009. PMID: 26942675; PMCID: PMC4888784.

[19] Li X, Jiang Y, Meisenhelder J, Yang W, Hawke DH, Zheng Y, Xia Y, Aldape K, He J, Hunter T, Wang L, Lu Z. Mitochondria-Translocated PGK1 Functions as a Protein Kinase to Coordinate Glycolysis and the TCA Cycle in Tumorigenesis. Mol Cell. 2016 Mar 3;61(5):705-719. doi: 10.1016/j.molcel. 2016.02.009. PMID: 26942675; PMCID: PMC4888784.

[20] Wilson RB, Solass W, Archid R, Weinreich FJ, Königsrainer A, Reymond MA. Resistance to anoikis in transcoelomic shedding: the role of glycolytic enzymes. Pleura Peritoneum. 2019 Mar 12;4(1):20190003. doi: 10.1515/pp-2019-0003. PMID: 31198853; PMCID: PMC6545877.

[21] Qian X, Li X, Shi Z, Xia Y, Cai Q, Xu D, Tan L, Du L, Zheng Y, Zhao D, Zhang C, Lorenzi PL, You Y, Jiang BH, Jiang T, Li H, Lu Z. PTEN Suppresses Glycolysis by Dephosphorylating and Inhibiting Autophosphorylated PGK1. Mol Cell. 2019 Nov 7;76(3):516-527.e7. doi: 10.1016/j. molcel. 2019. 08.006. Epub 2019 Sep 3. PMID: 31492635.

[22] Pérez E, Bergmann A. Intercellular cannibalism fuels tumor growth. Cell Death Differ. 2017 May;24(5):759-760. doi: 10.1038/cdd.2017.39. Epub 2017 Mar 24. PMID: 28338659; PMCID: PMC5423114.

[23] Qian X, Li X, Lu Z. Protein kinase activity of the glycolytic enzyme PGK1 regulates autophagy to promote tumorigenesis. Autophagy. 2017 Jul 3;13(7):1246-1247. doi: 10.1080/ 15548627.2017.1313945. Epub 2017 May 9. PMID: 28486006; PMCID: PMC5529066.

[24] Chen J, Cao S, Situ B, Zhong J, Hu Y, Li S, Huang J, Xu J, Wu S, Lin J, Zhao Q, Cai Z, Zheng L, Wang Q. Metabolic reprogramming-based characterization of circulating tumor cells in prostate cancer. J Exp Clin Cancer Res. 2018 Jun 28;37 (1):127. doi: 10.1186/s13046-018-0789-0. PMID: 29954422; PMCID: PMC6025832.

[25] Donmez C, Konac E. Silencing effects of FOXD1 inhibit metastatic potentials of the PCa via N-cadherin - Wnt/β-catenin crosstalk. Gene. 2022 Aug 20;836:146680. doi: 10.1016/j. gene. 2022.146680. Epub 2022 Jun 20. PMID: 35738443.

[26] Dogsom O, Hamza A, Mahmud S, Min JK, Lee YB, Park JB. The Complex of p-Tyr42 RhoA and p-p65/RelA in Response to LPS Regulates the Expression of Phosphoglycerate Kinase 1. Antioxidants (Basel). 2023 Dec 8;12(12):2090. doi: 10.3390/ antiox12122090. PMID: 38136210; PMCID: PMC10740983.

[27] Ahmad SS, Glatzle J, Bajaeifer K, Bühler S, Lehmann T, Königsrainer I, Vollmer JP, Sipos B, Ahmad SS, Northoff H, Königsrainer A, Zieker D. Phosphoglycerate kinase 1 as a promoter of metastasis in colon cancer. Int J Oncol. 2013 Aug;43(2):586-90. doi: 10.3892/ijo.2013.1971. Epub 2013 May 31. PMID: 23727790.

[28] Li X, Qian X, Jiang H, Xia Y, Zheng Y, Li J, Huang BJ, Fang J, Qian CN, Jiang T, Zeng YX, Lu Z. Nuclear PGK1 Alleviates ADP-Dependent Inhibition of CDC7 to Promote DNA Replication. Mol Cell. 2018 Nov 15;72(4):650-660.e8. doi: 10.1016/j.molcel.2018.09.007. Epub 2018 Nov 1. PMID: 30392930.

[29] Chen X, Zhao C, Li X, Wang T, Li Y, Cao C, Ding Y, Dong M, Finci L, Wang JH, Li X, Liu L. Terazosin activates Pgk1 and Hsp90 to promote stress resistance. Nat Chem Biol. 2015 Jan;11(1):19-25. doi: 10.1038/nchembio.1657. Epub 2014 Nov 10. PMID: 25383758; PMCID: PMC4412158.

[30] Jeon D, Park HJ, Kim HS. Protein S-glutathionylation induced by hypoxia increases hypoxia-inducible factor-1α in human colon cancer cells. Biochem Biophys Res Commun. 2018 Jan 1;495(1):212-216. doi: 10.1016/j.bbrc.2017.11.018. Epub 2017 Nov 4. PMID: 29113799.

[31] Fischer A, Maccio U, Wang K, Friemel J, Broglie Daeppen MA, Vetter D, Lehmann K, Reul A, Robledo M, Hantel C, Bechmann N, Pacak K, Zitzmann K, Auernhammer CJ, Grossman AB, Beuschlein F, Nölting S. PD-L1 and HIF-2α Upregulation in Head and Neck Paragangliomas after Embolization. Cancers (Basel). 2023 Oct 29;15(21):5199. doi: 10.3390/cancers15215199. PMID: 37958373; PMCID: PMC10650267.

[32] Tang SW, Chang WH, Su YC, Chen YC, Lai YH, Wu PT, Hsu CI, Lin WC, Lai MK, Lin JY. MYC pathway is activated in clear cell renal cell carcinoma and essential for proliferation of clear cell renal cell carcinoma cells. Cancer Lett. 2009 Jan 8;273(1):35-43. doi: 10.1016/j.canlet.2008.07.038. Epub 2008 Sep 21. PMID: 18809243.

[33] He Y, Luo Y, Huang L, Zhang D, Hou H, Liang Y, Deng S, Zhang P, Liang S. Novel inhibitors targeting the PGK1 metabolic enzyme in glycolysis exhibit effective antitumor activity against kidney renal clear cell carcinoma in vitro and in vivo. Eur J Med Chem. 2024 Mar 5;267:116209. doi: 10.1016/j.ejmech.2024.116209. Epub 2024 Feb 2. PMID: 38354523.

[34] Shashni B, Sakharkar KR, Nagasaki Y, Sakharkar MK. Glycolytic enzymes PGK1 and PKM2 as novel transcriptional targets of PPARγ in breast cancer pathophysiology. J Drug Target. 2013 Feb;21(2):161-74. doi: 10.3109/1061186X. 2012. 736998. Epub 2012 Nov 6. PMID: 23130662.

[35] Luo CH, Huang CT, Su CH, Yeh CS. Bacteria-Mediated Hypoxia-Specific Delivery of Nanoparticles for Tumors Imaging and Therapy. Nano Lett. 2016 Jun 8;16(6):3493-9. doi: 10.1021/acs.nanolett.6b00262. Epub 2016 May 9. PMID: 27148804.

[36] Vinklarova L, Schmidt M, Benek O, Kuca K, Gunn-Moore F, Musilek K. Friend or enemy? Review of 17β-HSD10 and its role in human health or disease. J Neurochem. 2020 Nov;155(3):231-249. doi: 10.1111/jnc.15027. Epub 2020 May 23. PMID: 32306391.

[37] Xu D, Aka JA, Wang R, Lin SX. 17beta-hydroxysteroid dehydrogenase type 5 is negatively correlated to apoptosis inhibitor GRP78 and tumor-secreted protein PGK1, and modulates breast cancer cell viability and proliferation. J Steroid Biochem Mol Biol. 2017 Jul;171:270-280. doi: 10.1016/j.jsbmb.2017.04.009. Epub 2017 Apr 27. PMID: 28457968.

[38] Aversa I, Zolea F, Ieranò C, Bulotta S, Trotta AM, Faniello MC, De Marco C, Malanga D, Biamonte F, Viglietto G, Cuda G, Scala S, Costanzo F. Epithelial-to-mesenchymal transition in FHC-silenced cells: the role of CXCR4/CXCL12 axis. J Exp Clin Cancer Res. 2017 Aug 3;36(1):104. doi: 10.1186/s13046-017-0571-8. PMID: 28774348; PMCID: PMC5543736.

[39] Chen J, Cao S, Situ B, Zhong J, Hu Y, Li S, Huang J, Xu J, Wu S, Lin J, Zhao Q, Cai Z, Zheng L, Wang Q. Metabolic reprogramming-based characterization of circulating tumor cells in prostate cancer. J Exp Clin Cancer Res. 2018 Jun 28;37(1):127. doi: 10.1186/s13046-018-0789-0. PMID: 29954422; PMCID: PMC6025832.

[40] Wang J, Wang J, Dai J, Jung Y, Wei CL, Wang Y, Havens AM, Hogg PJ, Keller ET, Pienta KJ, Nor JE, Wang CY, Taichman RS. A glycolytic mechanism regulating an angiogenic switch in prostate cancer. Cancer Res. 2007 Jan 1;67(1):149-59. doi: 10.1158/0008-5472.CAN-06-2971. Retraction in: Cancer Res. 2021 Mar 15;81(6):1623. doi: 10.1158/0008-5472.CAN-21-0464. PMID: 17210694.

[41] Li W, Li HL, Wang JZ, Liu R, Wang X. Abnormal protein post-translational modifications induces aggregation and abnormal deposition of protein, mediating neurodegenerative diseases. Cell Biosci. 2024 Feb 12;14(1):22. doi: 10.1186/s13578-023-01189-y. PMID: 38347638; PMCID: PMC10863199.

[42] Li Y, Zhang R, Hei H. Advances in post-translational modifications of proteins and cancer immunotherapy. Front Immunol. 2023 Aug 22;14:1229397. doi: 10.3389/fimmu. 2023. 1229397. PMID: 37675097; PMCID: PMC10477431.

[43] Lin J, Liu Y, Liu P, Qi W, Liu J, He X, Liu Q, Liu Z, Yin J, Lin J, Bao H, Lin J. SNHG17 alters anaerobic glycolysis by resetting phosphorylation modification of PGK1 to foster pro-tumor macrophage formation in pancreatic ductal adenocarcinoma. J Exp Clin Cancer Res. 2023 Dec 15;42 (1):339. doi: 10.1186/s13046-023-02890-z. PMID: 38098044; PMCID: PMC10722693.

[44] Ma S, Chen Y, Quan P, Zhang J, Han S, Wang G, Qi R, Zhang X, Wang F, Yuan J, Yang X, Jia W, Qin W. NPAS2 promotes aerobic glycolysis and tumor growth in prostate cancer through HIF-1A signaling. BMC Cancer. 2023 Mar 28;23(1):280. doi: 10.1186/s12885-023-10685-w. PMID: 36978001; PMCID: PMC10045944.

[45] Mukaneza Y, Cohen A, Rivard MÈ, Tardif J, Deschênes S, Ruiz M; LSFC Consortium; Laprise C, Des Rosiers C, Coderre L. mTORC1 is required for expression of LRPPRC and cytochrome-c oxidase but not HIF-1α in Leigh syndrome French Canadian type patient fibroblasts. Am J Physiol Cell Physiol. 2019 Jul 1;317(1):C58-C67. doi: 10.1152/ajpcell. 00160. 2017. Epub 2019 Apr 17. PMID: 30995105; PMCID: PMC6689754.

[46] Yu T, Zhao Y, Hu Z, Li J, Chu D, Zhang J, Li Z, Chen B, Zhang X, Pan H, Li S, Lin H, Liu L, Yan M, He X, Yao M. MetaLnc9 Facilitates Lung Cancer Metastasis via a PGK1-Activated AKT/mTOR Pathway. Cancer Res. 2017 Nov 1;77(21):5782-5794. doi: 10.1158/0008-5472.CAN-17-0671. Epub 2017 Sep 18. PMID: 28923857.

[47] Dong W, Li H, Wu X. Rab11-FIP2 suppressed tumor growth via regulation of PGK1 ubiquitination in non-small cell lung cancer. Biochem Biophys Res Commun. 2019 Jan 1;508(1):60-65. doi: 10.1016/j.bbrc.2018.11.108. Epub 2018 Nov 22. PMID: 30471866.

[48] Cai Q, Wang S, Jin L, Weng M, Zhou D, Wang J, Tang Z, Quan Z. Long non-coding RNA GBCDRlnc1 induces chemoresistance of gallbladder cancer cells by activating autophagy. Mol Cancer. 2019 Apr 5;18(1):82. doi: 10.1186/ s12943-019-1016-0. Erratum in: Mol Cancer. 2022 Dec 13; 21 (1):218. doi: 10.1186/s12943-022-01691-w. Erratum in: Mol Cancer. 2023 Mar 17;22(1):54. doi: 10.1186/s12943-023-01760-8. PMID: 30953511; PMCID: PMC6449938.

[49] Chu Z, Huo N, Zhu X, Liu H, Cong R, Ma L, Kang X, Xue C, Li J, Li Q, You H, Zhang Q, Xu X. FOXO3A-induced LINC00926 suppresses breast tumor growth and metastasis through inhibition of PGK1-mediated Warburg effect. Mol Ther. 2021 Sep 1;29(9):2737-2753. doi: 10.1016/j.ymthe. 2021. 04.036. Epub 2021 May 1. PMID: 33940159; PMCID: PMC 8417517.

[50] Nie H, Yi W. O-GlcNAcylation, a sweet link to the pathology of diseases. J Zhejiang Univ Sci B. 2019 May;20(5):437-448. doi: 10.1631/jzus. B1900150. PMID: 31090269; PMCID: PMC6568225.

[51] Wang H, Sun J, Sun H, Wang Y, Lin B, Wu L, Qin W, Zhu Q, Yi W. The OGT-c-Myc-PDK2 axis rewires the TCA cycle and promotes colorectal tumor growth. Cell Death Differ. 2024 May 22. doi: 10.1038/s41418-024-01315-4. Epub ahead of print. PMID: 38778217.

[52] Teng P, Cui K, Yao S, Fei B, Ling F, Li C, Huang Z. SIRT5-mediated ME2 desuccinylation promotes cancer growth by enhancing mitochondrial respiration. Cell Death Differ. 2024 Jan;31(1):65-77. doi: 10.1038/s41418-023-01240-y. Epub 2023 Nov 25. PMID: 38007551; PMCID: PMC10781994.

[53] Hu J, Chen J, Hou Q, Xu X, Ren J, Ma L, Yan X. Core-predominant gut fungus Kazachstania slooffiae promotes intestinal epithelial glycolysis via lysine desuccinylation in pigs. Microbiome. 2023 Feb 23;11(1):31. doi: 10.1186/s40168-023-01468-3. PMID: 36814349; PMCID: PMC9948344.

[54] Lee G, Wong C, Cho A, West JJ, Crawford AJ, Russo GC, Si BR, Kim J, Hoffner L, Jang C, Jung M, Leone RD, Konstantopoulos K, Ewald AJ, Wirtz D, Jeong S. E-cadherin Induces Serine Synthesis to Support Progression and Metastasis of Breast Cancer. Cancer Res. 2024 Jul 3. doi: 10.1158/0008-5472.CAN-23-3082. Epub ahead of print. PMID: 38959339.

[55] Li LC, Zhao H, Nakajima K, Oh BR, Ribeiro Filho LA, Carroll P, Dahiya R. Methylation of the E-cadherin gene promoter correlates with progression of prostate cancer. J Urol. 2001 Aug;166(2):705-9. PMID: 11458121.

[56] He P, Liu X, Yu G, Wang Y, Wang S, Liu J, An Y. METTL3 facilitates prostate cancer progression via inducing HOXC6 m6A modification and stabilizing its expression through IGF2BP2-dependent mechanisms. Mol Cell Biochem. 2024 Jul;479(7):1707-1720. doi: 10.1007/s11010-024-05023-y. Epub 2024 May 31. PMID: 38822192.

[57] Li L, Bai Y, Gao Y, Li D, Chen L, Zhou C, Feng M, Chen X, Jin W, Cao Y. Systematic Analysis Uncovers Associations of PGK1 with Prognosis and Immunological Characteristics in Breast Cancer. Dis Markers. 2021 Nov 8;2021:7711151. doi: 10.1155/2021/7711151. PMID: 34790279; PMCID: PMC859 2743.

[58] Sfanos KS, Yegnasubramanian S, Nelson WG, De Marzo AM. The inflammatory microenvironment and microbiome in prostate cancer development. Nat Rev Urol. 2018 Jan;15(1):11-24. doi: 10.1038/nrurol.2017.167. Epub 2017 Oct 31. PMID: 29089606.

[59] Schoepp M, Ströse AJ, Haier J. Dysregulation of miRNA Expression in Cancer Associated Fibroblasts (CAFs) and Its Consequences on the Tumor Microenvironment. Cancers (Basel). 2017 May 24;9(6):54. doi: 10.3390/cancers9060054. PMID: 28538690; PMCID: PMC5483873.

[60] Qiao J, Liu Z, Dong C, Luan Y, Zhang A, Moore C, Fu K, Peng J, Wang Y, Ren Z, Han C, Xu T, Fu YX. Targeting Tumors with IL-10 Prevents Dendritic Cell-Mediated CD8+ T Cell Apoptosis. Cancer Cell. 2019 Jun 10;35(6):901-915.e4. doi: 10.1016/j.ccell.2019.05.005. PMID: 31185213.

[61] Yamaguchi S, Tatsumi T, Takehara T, Sakamori R, Uemura A, Mizushima T, Ohkawa K, Storkus WJ, Hayashi N. Immunotherapy of murine colon cancer using receptor tyrosine kinase EphA2-derived peptide-pulsed dendritic cell vaccines. Cancer. 2007 Oct 1;110(7):1469-77. doi: 10.1002/cncr.22958. PMID: 17685394.

Downloads

Published

22-11-2024

Issue

Section

Articles

How to Cite

Lu, Z., Su, L., Qiu, R., Huang, M., & Huang , M. (2024). Progress in PGK1 in Prostate Cancer. International Journal of Biology and Life Sciences, 8(1), 24-30. https://doi.org/10.54097/zta8d431