Research Progress of Deep Learning in Diagnosis, Treatment and Prognosis Assessment of Hepatocellular Carcinoma

Authors

  • Mianlei Lin
  • Qian Wu
  • Caitao Zhao
  • Yingning Wu

DOI:

https://doi.org/10.54097/18qm3f54

Keywords:

Hepatocellular Carcinoma, Deep Learning, Convolutional Beutral Network, Microvascular Invasion, Transhepatic Arterial Chem Otherapy and Embolization

Abstract

Hepatic carcinoma (HCC) is a common malignant tumor in the abdominal system in China. Due to its high degree of malignancy, poor prognosis and easy recurrence, there are many therapeutic programs available, but the results are not satisfactory. The use of deep learning (DL) for diagnosis, treatment and prognosis assessment of HCC patients has become a hot topic at present. Therefore, this paper reviews the application of DL in early diagnosis, microvascular infiltration, pathological grading and postoperative evaluation of HCC.

Downloads

Download data is not yet available.

References

[1] Cunha G M, Sirlin C B, Fowler K J. Imaging diagnosis of hepatocellular carcinoma: LI-RADS[J]. Chin Clin Oncol, 2021,10(1):3.

[2] Lopez C L, Calvo M, Camara J C, et al. SEOM-GEMCAD-TTD clinical guidelines for the management of hepatocarcinoma patients (2023)[J]. Clin Transl Oncol, 2024.

[3] Burzykowski T, Rousseau A J, Geubbelmans M, et al. Introduction to machine learning[J]. Am J Orthod Dentofacial Orthop, 2023,163(5):732-734.

[4] Xue M, Jiang H, Zheng J, et al. Spatiotemporal Excitation Module-based CNN for Diagnosis of Hepatic Malignancy in Four-phase CT Images[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2023,2023:1-5.

[5] Said D, Carbonell G, Stocker D, et al. Semiautomated segmentation of hepatocellular carcinoma tumors with MRI using convolutional neural networks[J]. Eur Radiol, 2023,33 (9): 6020-6032.

[6] Gao L, Wang W, Meng X, et al. TPA: Two-stage progressive attention segmentation framework for hepatocellular carcinoma on multi-modality MRI[J]. Med Phys, 2024.

[7] Luo X, Li P, Chen H, et al. Automatic segmentation of hepatocellular carcinoma on dynamic contrast-enhanced MRI based on deep learning[J]. Phys Med Biol, 2024,69(6).

[8] Zheng R, Wang Q, Lv S, et al. Automatic Liver Tumor Segmentation on Dynamic Contrast Enhanced MRI Using 4D Information: Deep Learning Model Based on 3D Convolution and Convolutional LSTM[J]. IEEE Trans Med Imaging, 2022,41(10):2965-2976.

[9] Han Y, Akhtar J, Liu G, et al. Early warning and diagnosis of liver cancer based on dynamic network biomarker and deep learning[J]. Comput Struct Biotechnol J, 2023,21:3478-3489.

[10] Okimoto N, Yasaka K, Kaiume M, et al. Improving detection performance of hepatocellular carcinoma and interobserver agreement for liver imaging reporting and data system on CT using deep learning reconstruction[J]. Abdom Radiol (NY), 2023,48(4):1280-1289.

[11] Duan T, Zhang Z, Chen Y, et al. Deep learning-based compressed SENSE improved diffusion-weighted image quality and liver cancer detection: A prospective study[J]. Magn Reson Imaging, 2024,111:74-83.

[12] Xu T, Ren L, Liao M, et al. Preoperative radiomics analysis of contrast-enhanced CT for microvascular invasion and prognosis stratification in hepatocellular carcinoma[J]. Journal of Hepatocellular Carcinoma, 2022:189-201.

[13] Zhou Z, Xia T, Zhang T, et al. Prediction of preoperative microvascular invasion by dynamic radiomic analysis based on contrast-enhanced computed tomography[J]. Abdom Radiol (NY), 2024,49(2):611-624.

[14] Cao L, Wang Q, Hong J, et al. MVI-TR: A Transformer-Based Deep Learning Model with Contrast-Enhanced CT for Preoperative Prediction of Microvascular Invasion in Hepatocellular Carcinoma[J]. Cancers, 2023,15(5):1538.

[15] Zhang S, Xu G, Duan C, et al. Radiomics analysis of MR imaging with Gd-EOB-DTPA for preoperative prediction of microvascular invasion in hepatocellular carcinoma: investigation and comparison of different hepatobiliary phase delay times[J]. BioMed Research International, 2021,2021:1-8.

[16] Lei Y, Feng B, Wan M, et al. Predicting microvascular invasion in hepatocellular carcinoma with a CT- and MRI-based multimodal deep learning model[J]. Abdom Radiol (NY), 2024,49 (5):1397-1410.

[17] Zhou Y, Sun S W, Liu Q P, et al. TED: Two-stage expert-guided interpretable diagnosis framework for microvascular invasion in hepatocellular carcinoma[J]. Med Image Anal, 2022,82:102575.

[18] Liu Y, Zhang Z, Zhang H, et al. Clinical prediction of microvascular invasion in hepatocellular carcinoma using an MRI-based graph convolutional network model integrated with nomogram[J]. Br J Radiol, 2024,97(1157):938-946.

[19] Liu J, Ma J, Ai Y, et al. Vision-Guided Attention-Enhanced Network for Predicting Microvascular Invasion in Hepatocellular Carcinoma[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2023,2023:1-4.

[20] Liu H F, Wang M, Lu Y J, et al. CEMRI-Based Quantification of Intratumoral Heterogeneity for Predicting Aggressive Characteristics of Hepatocellular Carcinoma Using Habitat Analysis: Comparison and Combination of Deep Learning[J]. Acad Radiol, 2023.

[21] Chen W M, Fu M, Zhang C J, et al. Deep Learning-Based Universal Expert-Level Recognizing Pathological Images of Hepatocellular Carcinoma and Beyond[J]. Front Med (Lausanne), 2022,9:853261.

[22] Aatresh A A, Alabhya K, Lal S, et al. LiverNet: efficient and robust deep learning model for automatic diagnosis of sub-types of liver hepatocellular carcinoma cancer from H&E stained liver histopathology images[J]. Int J Comput Assist Radiol Surg, 2021,16(9):1549-1563.

[23] Yang D W, Jia X B, Xiao Y J, et al. Noninvasive Evaluation of the Pathologic Grade of Hepatocellular Carcinoma Using MCF-3DCNN: A Pilot Study[J]. Biomed Res Int, 2019,2019: 9783106.

[24] Lencioni R, de Baere T, Soulen M C, et al. Lipiodol transarterial chemoembolization for hepatocellular carcinoma: A systematic review of efficacy and safety data[J]. Hepatology, 2016,64(1):106-116.

[25] Sun Z, Li X, Liang H, et al. A Deep Learning Model Combining Multimodal Factors to Predict the Overall Survival of Transarterial Chemoembolization[J]. J Hepatocell Carcinoma, 2024,11:385-397.

[26] Chen Y, Shi Y, Wang R, et al. Development and Validation of Deep Learning Model for Intermediate-Stage Hepatocellular Carcinoma Survival with Transarterial Chemoembolization (MC-hccAI 002): a Retrospective, Multicenter, Cohort Study[J]. J Cancer, 2024,15(7):2066-2073.

[27] Liu Y, Liu Z, Li X, et al. Non-invasive assessment of response to transcatheter arterial chemoembolization for hepatocellular carcinoma with the deep neural networks-based radiomics nomogram[J]. Acta Radiol, 2024,65(6):535-545.

[28] Wang H, Liu Y, Xu N, et al. Development and validation of a deep learning model for survival prognosis of transcatheter arterial chemoembolization in patients with intermediate-stage hepatocellular carcinoma[J]. Eur J Radiol, 2022,156:110527.

[29] Chen C, Han Q, Ren H, et al. Multiparametric MRI-based model for prediction of local progression of hepatocellular carcinoma after thermal ablation[J]. Cancer Med, 2023,12(17): 17529-17540.

[30] Huang C, Hu P, Tian Y, et al. Whole-Liver Based Deep Learning for Preoperatively Predicting Overall Survival in Patients with Hepatocellular Carcinoma[J]. Stud Health Technol Inform, 2024,310:926-930.

[31] To J, Ghosh S, Zhao X, et al. Deep learning-based pathway-centric approach to characterize recurrent hepatocellular carcinoma after liver transplantation[J]. Hum Genomics, 2024,18(1):58.

Downloads

Published

22-11-2024

Issue

Section

Articles

How to Cite

Lin, M., Wu, Q., Zhao, C., & Wu, Y. (2024). Research Progress of Deep Learning in Diagnosis, Treatment and Prognosis Assessment of Hepatocellular Carcinoma. International Journal of Biology and Life Sciences, 8(1), 75-78. https://doi.org/10.54097/18qm3f54