Instability and dynamic behavior of arc attachments on electrodes and the effect on electrode erosion
DOI:
https://doi.org/10.54097/ije.v2i1.4902Keywords:
Voltage Drop, Negative Resistance, Gas discharge, Arc roots, InstabilityAbstract
Plasma interacting with electrodes is one of the most challenging issues in many industrial applications, such as power-interruption and plasma-metal erosion. Because of the concentration of arc attachments (root) and the voltage drop across the plasma sheath layer, the arc roots consume great amount of energy, which subsequently will increase the local temperature and erode the electrodes. Due to the nonequilibrium condition at plasma sheath, it is very difficult to quantitatively estimate the arc root temperature profile. The recognition of arc roots behavior, like instability and pattern formation, is important to estimate the electrode erosion. The potential drop arising through the sheath (double layer) is nonuniform. Due to thermionic field emission, the strong flux of charge carriers through the sheath will cause instability of the double layer, which weakens the inner potential gradient. As a result, the strong current dependent potential drop features a negative resistance. The existence of negative resistance causes the instability of arc attachments in the forms of immobility and constriction. Their interdependence between local current density and potential drop gives rise to the arc root formation that concentrates the energy into a small spot. Owing to the negative resistance, any perturbation will cause the current density in the sheath to grow to approximately infinity or decay to vanish, namely arc root formation or extinction. Thereby, the arc root instability provides the basis for the dynamic behavior of arc attachments and detachments on the electrodes, which will help to understand electrode erosion and avoid the damage from the arc plasma in engineering applications.
References
J. Riß, M. Lindmayer, M. Kurrat, Simplification of the arc splitting process in numerical gas flow simulations, Proceedings of ICEC-ICREPEC2012 (2012).
J. Huo, Y. Wang, Y. Cao, 3D computational study of arc splitting during power interruption: the influence of metal vapor enhanced radiation on arc dynamics, Journal of Physics D: Applied Physics 54(8) (2020) 085502.
J. Huo, Y. Cao, Computational Study of the Arc Splitting in Power Interruption: The Effect of the Metallic Vapor on Arc Dynamics, 2020 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), IEEE, 2020, pp. 415-418.
J. Huo, J. Ronzello, A. Rontey, Y. Wang, L. Jacobs, T. Sommerer, Y. Cao, Development of an arc root model for studying the electrode vaporization and its influence on arc dynamics, AIP Advances 10(8) (2020) 085324.
Q. Wang, Y. Wang, H. Nguyen, J. Huo, J. Ronzello, Y. Cao, Influence of ZnO Nanoparticles on the Light Absorption Spectrum of PMMA for Ablation Dominated Arc Interruption, 2020 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), IEEE, 2020, pp. 267-270.
J. Huo, S. Selezneva, L. Jacobs, Y. Cao, Low-Voltage Arc Interruption Computation: the Effect of Stefan Flow, 2018 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), IEEE, 2018, pp. 318-321.
J. Huo, S. Selezneva, L. Jacobs, Y. Cao, Study of wall ablation on low-voltage arc interruption: The effect of Stefan flow, Journal of Applied Physics 125(21) (2019) 213302.
B. Zhang, R. Zhou, K. Wang, Z. Guo, X. Li, M. Cao, J. Deng, D. Wang, Arc Interruption Performance of C 4 F 7 N-CO 2 Mixture in a 126 kV Disconnector, IEEE Transactions on Power Delivery (2022).
A. Agarwal, M.J. Kushner, Plasma atomic layer etching using conventional plasma equipment, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 27(1) (2009) 37-50.
G. Xu, J. Hu, H.L. Tsai, Three-dimensional modeling of the plasma arc in arc welding, Journal of Applied Physics 104(10) (2008) 103301.
D. Uhrlandt, M. Baeva, A.V. Pipa, R. Kozakov, G. Gött, Cathode fall voltage of TIG arcs from a non-equilibrium arc model, Welding in the World 59(1) (2014) 127-135.
N. Wang, K. Davis, M. Sotzing, M.A. Baferani, J. Huo, C.B. Carter, R. Gerhard, Y. Cao, Flexible nanogenerator with 3D-printed ferroelectrets, 2021 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), IEEE, 2021, pp. 375-378.
Y. Wang, Z. Li, T.J. Moran, L.A. Ortiz, C. Wu, A.C. Konstantinou, H. Nguyen, J. Zhou, J. Huo, K. Davis‐Amendola, Interfacial 2D Montmorillonite Nanocoatings Enable Sandwiched Polymer Nanocomposites to Exhibit Ultrahigh Capacitive Energy Storage Performance at Elevated Temperatures, Advanced Science (2022) 2204760.
N. Wang, J. Van Turnhout, R. Daniels, C. Wu, J. Huo, R. Gerhard, G. Sotzing, Y. Cao, Ion-Boosting the Charge Density and Piezoelectric Response of Ferroelectrets to Significantly High Levels, ACS applied materials & interfaces 14(37) (2022) 42705-42712.
Y. Wang, Z. Li, C. Wu, P. Zhou, J. Zhou, J. Huo, K. Davis, A.C. Konstantinou, H. Nguyen, Y. Cao, Polyamideimide dielectric with montmorillonite nanosheets coating for high-temperature energy storage, Chemical Engineering Journal 437 (2022) 135430.
J. Huo, N. Wang, H. Peng, Study of Non-Periodical Mechanical Metamaterials: Design and Application, Academic Journal of Science and Technology 3(3) (2022) 148-152.
Y. Wang, S. Nasreen, D. Kamal, Z. Li, C. Wu, J. Huo, L. Chen, R. Ramprasad, Y. Cao, Tuning Surface States of Metal/Polymer Contacts Toward Highly Insulating Polymer-Based Dielectrics, ACS Applied Materials & Interfaces 13(38) (2021) 46142-46150.
M. Ploner, N. Wang, C. Wu, R. Daniels, J. Huo, G.A. Sotzing, Y. Cao, Ultrathin, all-organic, fabric-based ferroelectret loudspeaker for wearable electronics, Iscience 25(12) (2022) 105607.
J. Huo, X. You, J. Hu, Z. Zhuang, An elasto-plastic damage accumulation model for fatigue life predication of ductile metals at the yield stress, International Journal of Damage Mechanics 31(3) (2022) 464-476.
J. Huo, A. Rontey, Y. Wang, L. Jacobs, Q. Chen, N. Wang, S. Ma, Y. Cao, Arc hopping dynamics induced by interfacial negative differential resistance, PNAS Nexus 1(3) (2022) pgac129.
M.D. Gray, Y.-J. Choi, J. Sirohi, L.L. Raja, Structure of propagating arc in a magneto-hydrodynamic rail plasma actuator, Journal of Physics D: Applied Physics 49(1) (2016).
S. Kharin, H. Nouri, B. Miedzinsky, Phenomena of arc root immobility in electrical contacts, 2012 IEEE 58th Holm Conference on Electrical Contacts (Holm), IEEE, 2012, pp. 1-5.
E. Lozneanu, V. Popescu, M. Sanduloviciu, Negative differential resistance related to self-organization phenomena in a dc gas discharge, Journal of Applied Physics 92(3) (2002) 1195-1199.
G. Yang, J. Heberlein, Instabilities in the anode region of atmospheric pressure arc plasmas, Plasma Sources Science and Technology 16(4) (2007) 765-773.
J.P. Trelles, Pattern formation and self-organization in plasmas interacting with surfaces, Journal of Physics D: Applied Physics 49(39) (2016).
M.S. Benilov, Nonlinear surface heating of a plane sample and modes of current transfer to hot arc cathodes, Physical Review E 58(5) (1998) 6480.
J. Sun, H. Wang, J. Zheng, Z. Li, J. Huo, C. Guo, Y. Wang, P. Xiao, S. Akram, D. Qin, Comprehensive review of treatments for suppressing surface charge accumulation and enhancing surface flashover voltage, CSEE Journal of Power and Energy Systems (2022).
J. Sun, S. Song, J. Zheng, Z. Li, J. Huo, Y. Wang, P. Xiao, S. Akram, D. Qin, A Review on Surface Flashover Phenomena at DC Voltage in Vacuum and Compressed Gas, IEEE Transactions on Dielectrics and Electrical Insulation 29(1) (2022) 1-14.
C. Charles, A review of recent laboratory double layer experiments, Plasma Sources Science and Technology 16(4) (2007) R1-R25.
S. Iizuka, K. Saeki, N. Sato, Y. Hatta, Buneman instability, pierce instability, and double-layer formation in a collisionless plasma, Physical review letters 43(19) (1979) 1404.
D.L. Newman, M.V. Goldman, R.E. Ergun, A. Mangeney, Formation of double layers and electron holes in a current-driven space plasma, Phys Rev Lett 87(25) (2001) 255001.
M. Lindmayer, E. Marzahn, A. Mutzke, T. Ruther, M. Springstubbe, The process of arc splitting between metal plates in low voltage arc chutes, IEEE Transactions on Components and Packaging Technologies 29(2) (2006) 310-317.
A. Mutzke, T. Rüther, M. Lindmayer, M. Kurrat, Arc behavior in low-voltage arc chambers, The European Physical Journal-Applied Physics 49(2) (2010) 22910.
J.R. Haase, D.B. Go, Analysis of thermionic and thermo-field emission in microscale gas discharges, Journal of Physics D: Applied Physics 49(5) (2016).
R. Morrow, J. Lowke, A one-dimensional theory for the electrode sheaths of electric arcs, Journal of physics D: Applied physics 26(4) (1993) 634.
M. Baeva, D. Uhrlandt, M.S. Benilov, M.D. Cunha, Comparing two non-equilibrium approaches to modelling of a free-burning arc, Plasma Sources Science and Technology 22(6) (2013) 065017.
L. Pekker, N. Hussary, Boundary conditions at the walls with thermionic electron emission in two temperature modeling of “thermal” plasmas, Physics of Plasmas 22(8) (2015) 083510.
M. Baeva, Non-equilibrium modeling of tungsten-inert gas arcs, Plasma Chemistry and Plasma Processing 37(2) (2017) 341-370.
J.P. Trelles, J.V.R. Heberlein, E. Pfender, Non-equilibrium modelling of arc plasma torches, Journal of Physics D: Applied Physics 40(19) (2007) 5937-5952.
C. Kong, J. Gao, J. Zhu, A. Ehn, M. Aldén, Z. Li, Characterization of an AC glow-type gliding arc discharge in atmospheric air with a current-voltage lumped model, Physics of Plasmas 24(9) (2017) 093515.
A. Khrabry, I.D. Kaganovich, A. Khodak, V. Vekselman, Y. Raitses, Validated Modeling of Atmospheric-Pressure Anodic Arc, arXiv preprint arXiv:.09991 (2019).
J. Huo, Y. Cao, Interfacial Potential Barrier Induced Constriction and Stepwise Transition of a Dynamic Arc Root, 2019 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), IEEE, 2019, pp. 564-567.
J. Haidar, A theoretical model for gas metal arc welding and gas tungsten arc welding. I, Journal of Applied Physics 84(7) (1998) 3518-3529.
P. Freton, J.J. Gonzalez, Z. Ranarijaona, J. Mougenot, Energy equation formulations for two-temperature modelling of ‘thermal’ plasmas, Journal of Physics D: Applied Physics 45(46) (2012) 465206.
J.O. Hirschfelder, C.F. Curtiss, R.B. Bird, M.G. Mayer, Molecular theory of gases and liquids, Wiley New York1954.
Y. Cressault, A.B. Murphy, P. Teulet, A. Gleizes, M. Schnick, Thermal plasma properties for Ar–Cu, Ar–Fe and Ar–Al mixtures used in welding plasmas processes: II. Transport coefficients at atmospheric pressure, Journal of Physics D: Applied Physics 46(41) (2013) 415207.
C. Chazelas, J.F. Coudert, P. Fauchais, Arc root behavior in plasma spray torch, IEEE Transactions on Plasma Science 33(2) (2005) 416-417.
J.P. Trelles, Formation of self-organized anode patterns in arc discharge simulations, Plasma Sources Science and Technology 22(2) (2013) 025017.