Exploring Vygotsky's Zone of Proximal Development in Pedagogy: A Critique of a Learning Event in the Business/Economics Classroom

Zhenghong Xue
University of College London, United Kingdom

Abstract: This academic journal article presents a critical examination of Lev Vygotsky's Social Constructivist Theory and its application in the Business/Economics classroom within a British educational context. Vygotsky's theory posits that the interaction between an individual's learning and social environment significantly shapes their intellectual development. This research highlights the educator's crucial role in understanding students' limitations in the learning context and providing necessary support and guidance to facilitate effective learning outcomes. Central to Vygotsky's theory is the Zone of Proximal Development (ZPD), representing the "learning gap" between a student's current knowledge and their potential. Emphasizing the concept of Scaffolding as a key strategy to bridge this gap, this study investigates how Scaffolding, though not explicitly mentioned by Vygotsky, aligns inherently with the ZPD theory, facilitating students' progression from their current proficiency level (Point A) to a more advanced stage (Point B).

Keywords: Pedagogy, Zone of Proximal Development (ZPD), Secondary Teaching Practice, Business/Economic Classroom.

1. Introduction

The scaffolding design in a lesson must consider the student's prior knowledge and zone of proximal development (ZPD), as highlighted by Vygotsky's social learning theory (Sanders et al., 2005). Incorporating students' prior knowledge into the design of the Scaffolding in the lesson, such as their prior understanding of the marketing mix, enables the teacher to increase motivation and engagement through activities that link product strategy to the Boston Matrix theory. In addition, it allows the teacher to provide individualised support for each student to boost motivation and engagement in the lesson. This approach recognises that learning occurs through interactions with more knowledgeable others and that Scaffolding is the support needed to help students bridge the gap between their current abilities and the desired learning outcomes (Fani et al., 2011). When teaching a Business lesson, ZPD activation begins when the teacher introduces content beyond the student's current subject knowledge and skills. Implementing scaffolding strategies, such as worksheets and guidance from the teacher and more skilled classmates, is essential for helping students tackle the most challenging tasks in their ZPD and promoting greater learning (Chaiklin and Seth, 2003). This is particularly important for Year 12 Business students preparing for A-Level exams, as Scaffolding can build their ability to answer exam criteria. To evaluate the effectiveness of the scaffolding design, it is important to consider the student's ability to complete the objectives outlined in the worksheet and group task in the lesson. Through careful analysis of these results, the teacher can determine whether the scaffolding design successfully supports student learning and makes the most challenging tasks accessible to all students.

2. Activity 1: Scaffolding Approach and Cooperative Learning

In accordance with Vygotsky's theory, Newman et al. (2021) postulated that more knowledgeable students can aid their less capable peers in academic advancement. In the initial learning sequence, students were grouped based on academic performance, learning effort, and mentor recommendations. Active dialogues within each group facilitated mutual knowledge sharing, and this was complemented by the Gradual Release of Responsibility model (Webb et al., 2019). In line with this model, instruction was initially provided by the teacher, demonstrating the application of keywords using an iPhone 14 example. Consequently, the high-ability students could apply their prior marketing knowledge to other Apple products during discussions. Monitoring and intervention were critical to guide students during group activities. In instances where students struggled with a term such as 'reinvestment,' the high-ability students shared their understanding, relating it to the decrease in iPod profits due to the shift towards smartphone music consumption. Additionally, underachieving students were scaffolded separately to verify their understanding of concepts like negative product cash flow and company reinvestment. As such, underachieving students became more confident in the subject terminology through peer explanations, demonstrating productivity as characterised by Kraatz et al. (2020). Moreover, the teacher gradually withdrew support from high-ability groups and challenged them to consider product differentiation for the Apple headphone. Constructivist learning theory highlights the importance of students constructing their knowledge through interaction with their environment (Vygotsky, 1978). Here, students applied their personal experiences to reason why youth prefer mobile phones over MP3 devices and how this impacts company profits.
3. Activity 2: Guided Practice and Gradual Release of Responsibility

The second activity focused on providing scaffolds to assist Year 12 students in completing 'word blank' questions to improve their understanding of the Boston Matrix theory and strategy (AO1). A potential limitation, as argued by Vygotsky and Chaiklin & S (2003), is that excessive teacher assistance may foster passive learning. This was observed when some high-ability students struggled with choosing between price penetration and the skimming strategy for a ‘Question Mark’ product. However, Gillies (2006) suggests open-ended questions and peer discussions to maintain active learning. For high-ability students, more challenging questions were provided, practising their AO1 skills and promoting independent learning (Vygotsky, 1986). The balance between guidance and challenging students for autonomous learning is crucial. However, caution must be exercised not to discourage underachieving students with overly challenging questions (Kirschners, Sweller, & Clark, 2006). Given the large class size, individualised support was challenging. To mitigate this, more time was allocated for activities, and peer assessment and discussion were arranged to promote learning (Sanders et al., 2005). The teacher provided a mark scheme or sample answer for feedback.

4. Activity 3: Enhancing Student Engagement through Group Tasks

The final activity transferred the role of the knowledgeable person to the students. In line with Wood’s (1976) scaffolding feature, students’ involvement in the learning process was encouraged. For instance, students were guided to research the sales trend of Samsung dishwashers and analyse it with group members. The high-ability students then guided their peers to categorise the ‘dishwasher’ as a “cash cow”, reflecting Vygotsky’s view that learners gain more knowledge or skills when guided by a more skilled individual (Chaiklin & S, 2003). As Sanders et al. (2005) pointed out, the gradual release of responsibility approach was also useful for assessing students’ gradually gained responsibility for the task, demonstrating the effectiveness of scaffolding. However, some students needed scaffolding to view the task from a company’s perspective. For instance, understanding why a ‘dog’ product was withdrawn from the market. Lastly, words of encouragement were used as effective tools to empower underachieving students and increase group discussion participation. Positive reinforcement significantly impacts student motivation, leading to improved engagement and better learning outcomes (Hammond & Gibbons, 2005). By offering encouragement and support, the teacher can help students feel more valued and confident in the subject matter, leading to a more meaningful and productive learning experience.

5. Conclusion

In light of the first episode’s findings, the educational approach of scaffolding has been underscored as vital within a classroom environment. It illuminates the importance of a teacher’s role as a facilitator, fostering active student engagement in the learning process. The Gradual Release of Responsibility model has emerged as an effective mechanism in promoting student learning. For future Business Education lessons, the enhancement of active student participation and collaboration via the integration of prior knowledge has been identified as a priority. This includes facilitating low-achieving students’ contribution to the scaffolding process through active engagement with high-achieving peers, and providing clear, illustrative instructions for effective instruction scaffolding. In the context of diverse product usage, such as the range offered by Apple, drawing students’ attention to various items is essential. The continual integration of prior knowledge into ongoing lessons and clear instruction provision are key strategies to ensure effective student scaffolding. Prior knowledge was identified as a significant factor enabling students to independently complete tasks. In subsequent implementation of scaffolding strategies, priority will be given to prior knowledge as a fundamental prerequisite for learning and personal development. Despite the benefits of the scaffolding strategy in fostering student comprehension, it is not without limitations. There is a risk of high-ability students adopting a passive learning stance in the face of extensive assistance. To circumvent this, the use of open-ended questions and peer discussions will be considered in future lessons, alongside more challenging questions to balance support and challenge for high-ability students. This is to be complemented by sustained support and individualised feedback. The task of delivering individualised support in larger classes will be addressed by allocating more time for main activities and fostering peer evaluations and discussions. Reflection on the use of scaffolding in a business lesson reveals the importance of diversifying scaffolding forms to engage all students. Consequently, future lessons may require diversifying the industries featured in group tasks to challenge and engage students effectively. For example, while the technology industry, epitomised by Apple, offers significant potential for scaffolding, introducing companies operating in other sectors, such as the food industry’s Coca-Cola, could provide alternative contexts for student analysis. Such a shift necessitates that students re-evaluate factors contributing to a ‘star product’, defined by the Boston Matrix, such as its relationship to consumer lifestyles. Thus, students can explore the popularity and unique attributes of products like Diet Coke, expanding their learning horizons and fostering a more comprehensive understanding of various industries.

References


