Application of Kimi Intelligent Assistant in the Teaching of Water Pollution Control Engineering Course

Jiao Chen, Shuxin Li, Qin Huang, Siyu Yan, Zhitao Xie, Yixin Lu*

School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu 611730, China
* Corresponding author

Abstract: With the rapid development of artificial intelligence technology, its application in the field of education is becoming increasingly widespread. This paper introduces the functional features of the Kimi Intelligent Assistant and elaborates on its application in the teaching of Water Pollution Control Engineering course from aspects such as assisting in lesson plan design, creating mind maps, answering questions, process design, exercise compilation, and extracurricular extended learning. Challenges and countermeasures of introducing Kimi Intelligent Assistant into the course teaching are analyzed from the perspectives of technology integration, teacher training, student acceptance, data security and privacy, cost, and curriculum content updates. The paper also provides a prospect for the further application of the Kimi Intelligent Assistant, suggesting that it is expected to become an important tool in promoting the technological development of future environmental engineering education.

Keywords: Intelligent assistant; Water pollution control engineering; Teaching; Application; Challenges.

1. Introduction

In the context of globalization, the protection of water resources and pollution control have become global challenges [1]. Water pollution control engineering, as a key discipline in the field of environmental protection, is crucial for training professionals capable of addressing these challenges [2]. However, traditional educational models have limitations in imparting complex technical knowledge, stimulating student interest, and achieving personalized teaching. With the rapid development of artificial intelligence technology, the education sector has ushered in an opportunity for innovation [3-5]. Developed by Moonshot AI, Kimi Intelligent Assistant integrates advanced natural language processing technology and extensive professional knowledge, providing a new auxiliary tool for the course teaching of water pollution control engineering. The application of Kimi Intelligent Assistant is expected to break the shackles of traditional teaching models by offering personalized learning experiences and enhancing teaching interaction, thereby improving the quality of teaching and the efficiency of student learning.

This study focuses on the application of Kimi Intelligent Assistant in the Water Pollution Control Engineering course, aiming to explore how it can optimize the teaching process, enhance student engagement, and promote in-depth understanding of knowledge. This research serves as a theoretical and practical basis for the development of future educational technologies.

2. About Kimi Intelligent Assistant

Kimi is an intelligent assistant developed by Moonshot AI, designed to provide comprehensive support in various educational settings. Specializing in handling both Chinese and English conversations, Kimi can understand and respond to a variety of user needs, from everyday inquiries to professional problem-solving, offering assistance across a broad spectrum. As an intelligent assistant, Kimi also possesses a sense of humor, creating a relaxed and pleasant atmosphere during interactions. The goal of Kimi is to become a capable assistant in users' work and life, helping them save time, improve efficiency, and enjoy the convenience brought by technological progress.

3. Application Analysis of Kimi Intelligent Assistant

3.1. Assistance in Lesson Plan Design

Kimi can aid teachers in designing lesson plans by suggesting structured outlines, incorporating multimedia resources, and aligning content with curriculum standards, ensuring that each lesson is engaging and informative. Figure 1 is a lesson plan created with the assistance of the Kimi Intelligent Assistant for the section “Wastewater Quality and Disposal” in the Water Pollution Control Engineering course. It automatically integrates the latest academic research and technological advancements, ensuring that lesson plans are up-to-date and cutting-edge, which is particularly crucial for technical courses like Water Pollution Control Engineering.

3.2. Aid in Creating Mind Maps

Mind mapping, as a powerful visualization tool, plays a significant role in the teaching of water pollution control engineering courses [6]. Kimi can provide significant assistance in the process of creating mind maps. It can quickly organize and structure data into clear mind maps based on user input. Figure 2 is a mind map created with the assistance of Kimi Intelligent Assistant regarding the activated sludge process, which can help students better understand and memorize the key concepts and steps of this wastewater treatment technology. This mind map starts with the definition and covers the historical development, principles, operational steps, advantages, challenges, and some improvements and derivative technologies of the activated sludge process. By structuring the information in this way, students can more easily grasp the overall framework and detailed content of the activated sludge process. In actual teaching, professional
mind mapping software can be used to create a more intuitive and interactive graphical mind map.

Course Objectives
- Understand the sources and characteristics of wastewater.
- Identify different types of wastewater and their treatment requirements.
- Explore the outlets and reuse pathways for treated wastewater.

Content Overview
- Classification and sources of wastewater.
- Major pollutants in wastewater and their impacts.
- Overview of wastewater disposal options.
- Reuse and resource recovery of treated wastewater.

Teaching Methods
- A combination of lecture and interactive discussion.
- Case studies.
- Group discussions.

Introduction (5 minutes)
- Introduce the course objectives and significance.
- Discuss the global challenge of water pollution and the necessity of wastewater treatment.

Classification and Sources of Wastewater (15 minutes)
- Lecture on the classification of wastewater (domestic, industrial, agricultural, etc.).
- Discuss the characteristics and types of pollutants in wastewater from different sources.
- Case Study: Analyze the wastewater sources and treatment process of a municipal wastewater treatment plant.

Major Pollutants in Wastewater (25 minutes)
- Introduce common wastewater pollutants (BOD, COD, heavy metals, nutrients, etc.).
- Discuss the potential impacts of pollutants on the environment and human health.
- Group Activity: Identify and discuss treatment methods for specific pollutants in wastewater.

Overview of Wastewater Disposal (15 minutes)
- Introduce the basic goals of wastewater treatment and disposal options (discharge, reuse, etc.).
- Discuss the advantages, disadvantages, and applicability of different wastewater disposal outlets.
- Video Presentation: Show the operation of a wastewater treatment plant and examples of wastewater disposal.

Reuse and Resource Recovery of Treated Wastewater (20 minutes)
- Lecture on the concept and technologies of wastewater reuse (irrigation, industrial water, landscape water).
- Discuss the potential and challenges of wastewater resource recovery.
- Group Discussion: Design a plan for using treated wastewater for agricultural irrigation.

Summary and Q&A Session (10 minutes)
- Summarize the key points of the lesson.
- Answer students’ questions.
- Preview the topic and content for the next lecture.

Teaching Assessment
- Class participation.
- Group discussion report.
- Homework and quizzes.

Teaching Resources
- PowerPoint slides.
- Video materials of wastewater treatment plants.
- Charts and data on pollutants.
- Case study materials.

Homework Assignment
- Research the treatment process and disposal options of a local wastewater treatment plant.
- Prepare a brief report on the reuse of wastewater.

Figure 1. Lesson plan: Wastewater quality and disposal

Activated Sludge Process

Definition
- Aerobic biological treatment process used to remove organic matter from wastewater

Historical Development
- First proposed and applied by British engineers in 1914

Basic Principles

Microbial Degradation
- Microorganisms break down organic matter into harmless substances

Adsorption
- Suspended solids and colloids are adsorbed by microbial flocs

Sedimentation Separation
- Flocs settle, and clear water is separated

Operational Steps

Aeration
- Oxygen is supplied to support aerobic decomposition by microorganisms

Mixed Liquor Recirculation
- Portion of treated water is recirculated to the aeration tank

Sludge Sedimentation
- Sedimentation separation occurs in the secondary clarifier

Sludge Treatment
- Sludge Thickening
- Sludge Digestion
- Sludge Dewatering

Advantages
- Efficient removal of organic matter
- Capable of treating high-strength wastewater
- Can achieve nitrogen and phosphorus removal

Challenges
- High energy consumption
- Requires professional operation and maintenance
- Large amount of sludge produced

Improvements and Derivative Technologies
- A2/O Process
- Sequencing Batch Reactor (SBR)
- Membrane Bioreactor (MBR)

Figure 2. Mind map: activated sludge process
3.3. Assistance in Q&A and Clarification

Equipped with extensive knowledge databases, Kimi can provide instant answers to student queries, clarifying doubts and reinforcing learning. This feature is beneficial for students who seek immediate feedback outside of classroom hours. Firstly, Kimi can help students understand complex concepts and principles in water pollution control. For instance, when students have questions about the activated sludge process in biological treatment, Kimi can provide detailed explanations and illustrate with examples. Moreover, Kimi can also offer expansions and deepening of knowledge points based on the latest research progress. Secondly, when completing homework related to water pollution control engineering, students may encounter calculation problems or design issues. Kimi can assist students with calculations, such as determining the design parameters of a wastewater treatment plant, or help students understand the construction and application of water quality models. Thirdly, Kimi can provide real water pollution cases to help students combine theoretical knowledge with practical problems. By analyzing cases, students can better understand the practical application of water pollution control engineering and improve their ability to solve real-world problems. Fourthly, in the laboratory courses of water pollution control engineering, Kimi can provide guidance on experimental procedures, explain the principles of experiments, and analyze experimental data. This not only helps students complete experiments successfully but also deepens their understanding of the experimental content. Fifthly, Kimi can engage in interactive learning with students, stimulating their interest in learning through question-and-answer sessions. For example, students can ask Kimi about the identification of water pollution sources, the migration and transformation rules of pollutants, etc., and Kimi can provide timely and accurate answers to promote students’ thinking and learning. Sixthly, before exams, Kimi can help students review course content, provide mock and practice questions, and answer questions encountered during the review process. This helps students consolidate knowledge points and improve exam scores. Furthermore, Kimi can provide the latest research findings and policy updates in the field of water pollution control, helping students and teachers keep up with industry developments.

3.4. Aid in Process Design

Kimi plays a significant role in the field of environmental engineering education and practice, particularly in assisting with the design of wastewater treatment processes in the Water Pollution Control Engineering course. Firstly, Kimi can help students and teachers understand and design various stages of wastewater treatment, including preliminary treatment, primary treatment, secondary biological treatment, and advanced treatment. By providing detailed process descriptions and design parameters, Kimi can guide users in selecting the most suitable treatment technologies, such as activated sludge processes, biofilm processes, and wetland treatment systems. Secondly, Kimi can utilize advanced simulation algorithms to help users model the operation of wastewater treatment plants, predict treatment outcomes, and optimize processes. This not only improves design efficiency but also ensures that the designed processes meet specific water quality requirements and environmental standards. Thirdly, in the process design, cost control is an important consideration. Kimi can provide cost-benefit analysis to help users assess the economic viability of different design schemes, including construction costs, operational costs, and potential environmental benefits. Fourthly, Kimi can assist in conducting environmental impact assessments, considering the potential effects of wastewater treatment processes on the surrounding environment, such as noise, odors, and sludge management. This helps identify and mitigate negative impacts during the design phase. Fifthly, Kimi has a rich library of wastewater treatment case studies, providing successful examples and lessons learned from different types of wastewater treatment plants. This information is invaluable for students to understand the practical application of theories and for teachers preparing teaching materials. Sixthly, Kimi supports interactive learning, where students can gain a deeper understanding of the complexities of wastewater treatment process design through questions and discussions. Kimi can answer specific questions students encounter during the design process, providing real-time feedback and suggestions. Additionally, with the continuous emergence of new technologies and standards, Kimi can keep its databases and knowledge base up-to-date, ensuring that the information and design recommendations provided are current. This helps maintain the cutting-edge nature of the course content and assists students and teachers in keeping pace with industry developments.

In summary, Kimi offers multifaceted support in assisting with the design of wastewater treatment processes in the Water Pollution Control Engineering course. It not only enhances students' design capabilities and innovative thinking but also provides teachers with powerful teaching aids. Through the application of Kimi, the quality of teaching and practice in wastewater treatment process design can be effectively improved.

3.5. Assistance in Exercise Compilation

Kimi can generate a variety of exercises tailored to the course content, ranging from theoretical questions to practical problems. It can also provide solutions and explanations, aiding in the assessment and review process. Firstly, Kimi can automatically generate exercises based on the course content and syllabus, including multiple-choice questions, fill-in-the-blank, calculation problems, and case analysis questions. These questions cover the core knowledge points of water pollution control engineering, such as biodegradation of pollutants, wastewater treatment processes, and water quality monitoring techniques, helping teachers save time in creating questions while ensuring the quality and coverage of the exercises. Secondly, Kimi is capable of categorizing exercises by difficulty level, thus helping teachers design suitable practice for students of varying proficiency levels. This ensures that the exercises meet the review needs of basic-level students while also challenging the analytical and problem-solving abilities of advanced-level students. Thirdly, teachers can utilize Kimi's customization features to adjust the content and format of exercises according to the specific situations of students and teaching objectives. For example, teachers can request Kimi to add more questions about emerging water treatment technologies or the latest environmental regulations to keep the course content timely and forward-looking. Fourthly, Kimi not only generates exercises but also provides detailed solution steps and explanations. This is a significant
advantage for students as it allows them to receive instant feedback during the problem-solving process, thereby better understanding and mastering the knowledge points. Moreover, Kimi can collect and analyze students' performance data in exercise practice, helping teachers understand students' learning progress and grasp of the material. This data can be used to adjust teaching strategies, optimize exercise content, and can even serve as part of formative assessment.

In summary, Kimi provides strong support in assisting teachers with exercise compilation for the Water Pollution Control Engineering course, not only improving teachers' work efficiency but also enriching students' learning experiences. It represents a successful application of modern educational technology in the field of environmental engineering.

3.6. Assistance in Extracurricular Expansion Learning

Kimi, the intelligent assistant, plays a significant role in extracurricular expansion learning for the Water Pollution Control Engineering course, providing not only a wealth of learning resources and tools but also opportunities for interaction and self-directed learning, greatly promoting the comprehensive development of students.

Firstly, Kimi can recommend relevant online resources based on students' learning progress and interests, such as academic papers, professional blogs, industry reports, and online courses. These resources can help students delve deeper into cutting-edge technologies and the latest research trends in water pollution control. Secondly, through its virtual laboratory feature, Kimi provides a simulated experimental environment, allowing students to conduct wastewater treatment process simulations and experimental designs without actual laboratory conditions. This interactive learning approach enhances students' practical skills and innovative thinking. Thirdly, Kimi can create a discussion forum to encourage students to discuss and exchange ideas on topics related to water pollution control. On this platform, students can ask questions, share insights, and even interact with industry experts, thereby broadening their knowledge perspectives. Besides, Kimi encourages students to explore the interdisciplinary fields between water pollution control and other subjects such as biology, chemistry, and environmental science. Through interdisciplinary learning, students can gain a more comprehensive perspective and deeper understanding.

4. Challenges and Countermeasures of Introducing Kimi into Teaching

As listed in Table 1, integrating Kimi into the Water Pollution Control Engineering course can bring numerous advantages, but it also faces a series of challenges.

<table>
<thead>
<tr>
<th>Items</th>
<th>Challenges</th>
<th>Countermeasures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technological</td>
<td>Integrating Kimi with existing teaching systems and course content effectively is a challenge.</td>
<td>Work closely with the technical team to conduct system compatibility tests and customized development to ensure seamless integration of Kimi into existing teaching platforms.</td>
</tr>
<tr>
<td>integration</td>
<td>Ensuring technological compatibility and seamless data integration is necessary.</td>
<td>Provide comprehensive teacher training, including basic operations of Kimi, teaching application case studies, and FAQs.</td>
</tr>
<tr>
<td>Teacher training</td>
<td>Teachers may need time to adapt to new teaching tools and master the effective use of Kimi for teaching.</td>
<td>Demonstrate the advantages of Kimi through student seminars and experience activities.</td>
</tr>
<tr>
<td>Student acceptance</td>
<td>Students may be reserved about new learning tools, especially those accustomed to traditional learning methods.</td>
<td>Establish strict data management policies, and use encryption technology and anonymous processing methods to protect student data.</td>
</tr>
<tr>
<td>Data security and privacy</td>
<td>It involves the collection and analysis of student learning data, and it is essential to ensure the security of data and the protection of student privacy.</td>
<td>Conduct a cost-benefit analysis, explore possible sources of funding.</td>
</tr>
<tr>
<td>Cost issues</td>
<td>Introducing Kimi may bring additional costs, including purchase, maintenance, and upgrade expenses.</td>
<td>Establish a regular update mechanism, ensure that Kimi’s knowledge base and teaching resources reflect the latest technological advancements.</td>
</tr>
<tr>
<td>Teaching content update</td>
<td>As water pollution control technology evolves, teaching content needs to be updated continuously to maintain the timeliness of the course.</td>
<td></td>
</tr>
</tbody>
</table>

By analyzing the challenges and implementing the countermeasures mentioned above, Kimi can be effectively integrated into the teaching of the Water Pollution Control Engineering course, thereby improving teaching quality, stimulating students' interest in learning, and laying the foundation for future educational innovation.

5. Conclusion

The application of the Kimi Intelligent Assistant in the teaching of Water Pollution Control Engineering course can effectively enhance the quality of teaching and students' learning experience. The introduction of the Kimi Intelligent Assistant not only enriches teaching methods but also stimulates students' motivation and innovative thinking through personalized learning support and real-time feedback mechanisms. Furthermore, the Kimi Intelligent Assistant has shown great potential in integrating course resources, simulating actual water treatment scenarios, and providing instant Q&A, which helps students better understand complex concepts and apply theoretical knowledge to practice. Although challenges such as technology integration and the transformation of the teacher's role have been encountered during the implementation process, overall, the application of the Kimi Intelligent Assistant has been successful. In the future, with the continuous advancement of artificial
intelligence technology, the Kimi Intelligent Assistant is expected to be further optimized, providing more powerful and diverse support for the teaching of specialized courses like water pollution control engineering. Educators should actively explore new teaching models combined with intelligent assistants to adapt to the development trend of educational informatization and cultivate environmental engineering professionals with modern technological literacy.

Acknowledgment

This work was financially supported by Sichuan Province 2021-2023 Higher Education Talent Training Quality and Teaching Reform Project (JG2021-1409): Construction and practical exploration of the system for cultivating students' innovation ability in environmental courses under the concept of Internet Plus education.

References