Research on Development Status and Countermeasures of Electronic Information Engineering

Shuqing Lin
Ulaanbaatar Erdem University, Ulaanbaatar, 11000, Mongolia

Abstract: With the rapid development of information technology, electronic information engineering is growing and developing as an important discipline and industry. This study analyses the current development status of electronic information engineering, discusses its application fields and prospects, and points out the problems and challenges in its development. Meanwhile, this thesis proposes a series of countermeasures, including policy support and guidance, talent training and introduction, technological innovation and R&D, and international cooperation and exchange, in order to promote the healthy development of electronic information engineering. Finally, this thesis evaluates the implementation and effect of countermeasures.

Keywords: Electronic information engineering; Development status; Problems and challenges; Countermeasure research; Implementation and evaluation.

1. Introduction

Electronic information engineering is a comprehensive discipline involving electronic technology and information technology, and its development is of great significance in promoting social and economic progress and enhancing the comprehensive competitiveness of the country. The purpose of this paper is to analyse the development status of electronic information engineering and put forward corresponding countermeasures to promote its further development.

2. The analysis of the development status of electronic information engineering

2.1. Definition and scope of electronic information engineering

Electronic information engineering refers to a discipline and technical field that uses electronic technology and information technology for the transmission, processing, storage and application of information. It involves the knowledge and technology of many disciplines and fields such as electronic technology, communication technology, computer technology, control technology and so on.

The scope of electronic information engineering is very wide, including but not limited to the following aspects:

Communication technology: electronic information engineering involves the research and application of various communication technologies, including wired and wireless communications. Wired communication mainly includes telephone, fax, telegraph, etc., while wireless communication includes radio communication, satellite communication, mobile communication, etc. [1].

Computer technology: electronic information engineering is closely related to computer technology, including the design, development and application of computer hardware and software. It involves the study of computer networks, operating systems, databases, artificial intelligence, and so on.

Control technology: electronic information engineering also involves the research and application of control technology, including automatic control, robotics, sensor technology and so on. It can be applied to industrial control, traffic control, environmental monitoring and other fields.

Information security technology: electronic information engineering also involves the research and application of information security technology, including cryptography, network security, information hiding and other aspects. It is mainly used to protect the confidentiality, integrity and availability of information.

Electronic devices and circuits: electronic information engineering also includes the design, manufacture and application of electronic devices and circuits. It involves various electronic components, integrated circuits, electronic systems and other aspects.

2.2. Development history of electronic information engineering

Electronic information engineering is a comprehensive discipline, covering a variety of fields such as electronic technology, communication technology, computer technology and so on. Its development history can be traced back to the origin of telecommunication technology and electronic technology in the early 20th century.

At the beginning of the 20th century, the development of electronic technology promoted the progress of telecommunication technology, and in 1901, Marconi successfully realised radio communication, pioneering the field of radio communication. Since then, radio communication technology has continued to develop, and has gradually been applied to radio, television, radar and other fields.

In the 1940s, the birth of the electronic computer marked a new era in electronic information engineering. The first electronic computer, ENIAC, was introduced in 1946, and its appearance led to the rapid development of computer technology. In the next few decades, computer technology continued to advance, from mainframes and minicomputers to personal computers and now mobile computing devices, computers have become the core of electronic information engineering [2].
In the 1960s, communication technology saw a major breakthrough. Digital communication technology based on digital technology began to be used in telephone exchanges and communication networks, greatly improving the quality and efficiency of communication. Since then, the emergence of optical fibre communication technology has further promoted the development of communication technology, resulting in a significant increase in information transmission speed.

At the beginning of the 21st century, the rapid development of mobile communication technology has become an important milestone in electronic information engineering. 3G, 4G and 5G mobile communication technology is constantly upgraded, so that people can carry out high-speed and stable wireless communication anytime and anywhere. At the same time, the popularity and development of the Internet make the acquisition and exchange of information more convenient.

At present, electronic information engineering is in a stage of rapid development. With the rise of emerging technologies such as the Internet of Things, artificial intelligence, big data and so on, the application fields of electronic information engineering are constantly expanding. At the same time, the challenges are gradually increasing, such as information security, environmental protection and other issues need to be solved.

2.3. Application fields and prospects of electronic information engineering

As a comprehensive discipline, electronic information engineering is widely used in various fields and plays an important role in modern society. It involves many aspects such as electronic technology, communication technology, computer technology, etc., and brings great convenience and benefits to people's life and work. In this paper, we will discuss the two aspects of application fields and prospects.

Firstly, electronic information engineering is of great significance in the field of communication. With the popularisation of the Internet and the rapid development of mobile communication technology, people's demand for communication is getting higher and higher. The application of electronic information engineering in the field of communication includes wireless communication, optical fibre communication, satellite communication and so on, which makes it possible for people to carry out voice call, information transmission and data interaction anytime and anywhere, and greatly improves the efficiency and convenience of communication.

Secondly, electronic information engineering is also widely used in the field of electronic equipment and consumer electronics. The technologies and theories of electronic information engineering provide important support for the design, manufacture and maintenance of electronic devices. For example, the research and development and production of consumer electronic products such as smart phones, tablet computers, TV sets and so on cannot be separated from the technical support of electronic information engineering, which makes people's life more convenient and rich.

In addition, electronic information engineering also has important applications in the field of energy. With the increase of energy demand and environmental protection requirements, electronic information engineering plays an important role in the production, transmission and use of energy. For example, the construction and management of the smart grid uses the technology of electronic information engineering to achieve the monitoring and scheduling of the power system and to improve the efficiency of energy use and the reliability of supply.

In the future, the application prospect of electronic information engineering remains broad. With the development of artificial intelligence, Internet of Things, big data and other emerging technologies, electronic information engineering will be further applied to smart homes, smart cities, intelligent transport and other fields, bringing more convenience and innovation to people's life and work. At the same time, the development of electronic information engineering also faces some challenges, such as security, privacy protection and other issues need to be solved [3].

2.4. Problems and challenges in the development of electronic information engineering

As an emerging discipline and industry, electronic information engineering faces many problems and challenges. Firstly, due to the rapid development and updating of technology, the field of electronic information engineering suffers from the problem of fast technology updating and short knowledge updating cycle. This requires that electronic information engineers need to continuously learn and update their knowledge to adapt to the development and application of new technologies.

Secondly, the application field of electronic information engineering is wide, involving electronic equipment, communication system, network technology and other aspects. This requires that electronic information engineering personnel need to have multidisciplinary knowledge and comprehensive ability, and be able to work and innovate across disciplines. However, at present, the cultivation of electronic information engineering personnel still has the problems of low specialisation and insufficient comprehensive ability, which limits the development and application of electronic information engineering.

In addition, the field of electronic information engineering also suffers from the problems of inconsistent technical standards and poor interoperability. The inconsistency of technical standards between different manufacturers and organisations has led to poor interoperability between electronic equipment and systems, which limits the application and development of EE. Therefore, there is a need to strengthen international co-operation and exchanges, promote the formulation and promotion of technical standards, and improve the interoperability of electronic information engineering.

In addition, e-Information Engineering faces great challenges in dealing with information security and privacy protection. With the development of information technology, problems such as cyber-attacks and data leakage have become increasingly serious. Therefore, electronic information engineers need to strengthen the research and application of information security and privacy protection to improve the security and reliability of electronic information systems.
3. Research on countermeasures for the development of electronic information engineering

3.1. Policy support and guidance

Formulate relevant policies and planning. In the development process of electronic information engineering field, formulating relevant policies and planning is a crucial initiative. By formulating clear policies and planning, it can provide guidance and support for the development of electronic information engineering and promote the healthy development of the industry and the enhancement of innovation capacity.

Firstly, the formulation of relevant policies and planning can provide a direction for the development of electronic information engineering. Policies and planning can clarify the development objectives and key areas of electronic information engineering, and guide the direction of technological research and development and innovation of enterprises and scientific research institutions. At the same time, the policy and planning can also provide a decision-making basis for government departments and promote the implementation and landing of relevant policies [4].

Secondly, the formulation of relevant policies and planning can promote the rational allocation of resources. The government can mobilise resources in all aspects by formulating policies and planning, and provide policy measures such as financial support and tax incentives to attract more investment and talents into the field of electronic information engineering. At the same time, the government can also guide enterprises and scientific research institutes to cooperate in technological innovation and research and development through policies and planning, so as to achieve the sharing of resources and complementarity of advantages.

In addition, the formulation of relevant policies and planning can also promote industrial upgrading and transformation. The government can promote technological innovation and industrial upgrading in the field of electronic information engineering through policies and planning, strengthen integration with other industries, and cultivate new growth points and competitive advantages. At the same time, the government can also promote the internationalization of enterprises through policies and planning, expand overseas markets and co-operation opportunities, and enhance the competitiveness and influence of enterprises.

Strengthen government investment and support. In the development of electronic information engineering, government investment and support is crucial. Strengthening government investment and support can promote the rapid development of electronic information engineering and the prosperity of related industries.

Firstly, strengthening government investment can provide sufficient financial support. Electronic information engineering is a high-tech field that requires a large amount of R&D investment and equipment support. Government investment can provide financial support for enterprises to help them carry out innovative R&D, technological transformation and equipment renewal. This can improve the competitiveness of enterprises and promote the development of the industry.

Secondly, strengthening government support can provide policy protection. The government can introduce relevant policies and plans to provide a favourable development environment for electronic information engineering. For example, tax incentives, research funding support and innovation incentives can be given to encourage enterprises to increase R&D investment and technological innovation. The government can also strengthen the protection of intellectual property rights, safeguard the legitimate rights and interests of enterprises, and improve their motivation to innovate.

In addition, the government can also strengthen the support and introduction of talents. Electronic information engineering needs the support of high-quality talents. The government can improve the cultivation and introduction of talents by funding projects, setting up scholarships and organising training. The government can co-operate with colleges and universities, research institutes and other institutions to jointly cultivate and introduce excellent talents in the field of electronic information engineering, so as to provide strong talent support for the development of the industry.

Finally, the government can strengthen cooperation and communication with enterprises to jointly promote the development of electronic information engineering. The government can establish a close partnership with enterprises to jointly carry out scientific research projects, technological innovation and industrial transformation and upgrading. The government can organise industry exchange meetings, exhibitions and training activities to promote communication and cooperation between enterprises and promote the common development of the industry [5].

3.2. Cultivation and Introduction of Talents

Strengthening the professional education of electronic information engineering is an important measure to promote the development of electronic information engineering. With the rapid development of information technology, electronic information engineering has become one of the core industries of modern society. However, due to the complexity and rapid update of electronic information engineering technology, professional education needs to constantly adapt to the needs of the industry and cultivate high-quality electronic information engineering talents.

First of all, strengthening the professional education of electronic information engineering requires updating the teaching content and teaching methods. Teaching content should keep up with the frontier of technological development and introduce the latest theoretical and practical achievements in a timely manner. Teaching methods should focus on cultivating students' practical ability and innovative thinking, adopting a project-driven teaching mode, so that students can master knowledge and skills through practical operation and practice projects.

Secondly, strengthening the professional education of electronic information engineering requires increasing the construction of the teaching staff. Introduce high-level teachers and professionals to improve the academic level and teaching ability of teachers. At the same time, the training and exchange of teachers should be strengthened to improve their professionalism and education and teaching level. In addition, a mechanism of cooperation between the industry and the school should be established, and enterprise experts should be invited to give lectures in the school, so as to strengthen the cooperation and exchange between the school and the enterprise.

Strengthening the professional education of electronic
information engineering requires the provision of a good practical environment and facilities. Electronic information engineering is a highly practical discipline, and students need to have sufficient practical opportunities to consolidate what they have learnt. Schools should establish perfect laboratories and practice bases, provide advanced experimental equipment and software tools, so that students can carry out practical electronic information engineering projects and experimental operations.

Finally, strengthening the education of electronic information engineering needs to strengthen the cooperation and communication with the industry. Schools should establish close cooperation with enterprises to jointly carry out research projects and practical activities. Through cooperation with enterprises, schools can better understand the needs of the industry, adjust the teaching content and methods, and cultivate electronic information engineering talents who are more in line with the market demand.

Introducing high-level talents and teams. In the field of electronic information engineering, the introduction of high-level talents and teams is crucial to promoting the development and innovation of the industry. They can bring in advanced technology and concepts, promote the R&D and implementation of projects, and improve the competitiveness and innovation of enterprises. Therefore, the introduction of high-level talents and teams has become one of the important countermeasures for the development of electronic information engineering [6].

Firstly, the introduction of high-level talents and teams requires the formulation of corresponding policies and measures. The government can attract domestic and foreign excellent electronic information engineering talents and teams to come to develop by introducing relevant policies and providing favourable tax and welfare policies. In addition, the government can also set up a special fund for the introduction of high-level talents and teams, and provide financial support.

Secondly, the introduction of high-level talents and teams needs to strengthen cooperation with universities and scientific research institutions. The establishment of joint laboratories, scientific research platforms and other cooperation mechanisms with universities can provide a better research environment and conditions for high-level talents and attract them to join the research and innovation in the field of electronic information engineering. At the same time, cooperation with scientific research institutions can promote technology transfer and the combination of industry, academia and research, and promote the transformation and application of scientific research results.

In addition, the introduction of high-level talents and teams needs to provide a good development environment and treatment. Provide them with good working conditions, remuneration and career development space to stimulate their enthusiasm and innovation potential. At the same time, establish a good scientific research mechanism and evaluation system to provide a platform for them to show their talents and encourage them to make more contributions in the field of electronic information engineering.

Finally, the introduction of high-level talents and teams also needs to strengthen international exchanges and cooperation. Through co-operation and exchange with other countries, we can attract international excellent electronic information engineering talents and teams to work and research in China. At the same time, the experience and advanced technology of other countries can be learnt to promote the development and innovation of China's electronic information engineering field.

3.3. Technological Innovation and R&D

Strengthen basic and applied research. With the continuous progress of science and technology and the rapid development of society, electronic information engineering, as an important discipline and industry, plays a key role in promoting social progress and economic development. In order to further enhance the development level of electronic information engineering and promote technological innovation, it is particularly important to strengthen basic research and applied research.

Basic research is an important corner stone for the development of science and technology, and it plays an important role in promoting the development of electronic information engineering. By strengthening basic research, we can deeply understand the essence and principles of electronic information engineering, master advanced theories and methods, and provide a solid foundation for technological innovation. In basic research, new materials, new devices and new algorithms can be explored, thus promoting the development of electronic information engineering.

Applied research is an important part of applying basic research results to actual production and social life. By strengthening applied research, the results of basic research can be transformed into practical products and solutions, providing strong support for social and economic development. In applied research, new application scenarios, new products and new services can be explored to meet the needs of society for electronic information engineering [7].

Promote technological innovation and industrial transformation and upgrading. With the continuous progress of science and technology and the rapid development of society, the field of electronic information engineering is facing ever-changing challenges and opportunities. In order to promote the sustainable development of electronic information engineering, it is necessary to continuously carry out technological innovation and industrial transformation and upgrading. This part will discuss how to promote technological innovation and industrial transformation and upgrading related countermeasures.

Firstly, strengthening basic research and applied research is the key to promote technological innovation. By increasing investment in basic research, a group of high-level scientific research talents should be cultivated and attracted, and a group of internationally competitive research institutions should be established. At the same time, it is necessary to strengthen cooperation with enterprises, transform scientific research results into practical applications, and promote the close integration of scientific and technological innovation with industrial development.

Second, promoting technological innovation also requires strengthening the protection of intellectual property rights and the formulation of technical standards. Strengthening the protection of intellectual property rights is an important means to stimulate innovation, and it is necessary to establish sound laws and regulations and regulatory mechanisms, and intensify the fight against infringement. At the same time, it is necessary to actively participate in the development and promotion of international standards to improve China's voice and influence in the field of electronic information engineering.

In addition, promoting industrial transformation and
upgrading requires strengthening the technological innovation ability and market competitiveness of enterprises. The government should increase support for enterprises, encourage them to increase R&D investment, and strengthen the cultivation and introduction of technological innovation capacity. At the same time, it should strengthen cooperation with universities and scientific research institutions, promote the transformation and industrialisation of scientific and technological achievements, and cultivate a group of electronic information engineering enterprises with core competitiveness.

In addition, promoting technological innovation and industrial transformation and upgrading also requires strengthening international cooperation and exchange. Through cooperation and exchanges with other countries, scientific and technological resources and experience can be shared to promote technological innovation and industrial development for mutual benefit. At the same time, it is necessary to actively participate in the formulation and promotion of international standards to improve China's voice and influence in the field of electronic information engineering.

3.4. International Co-operation and Exchange

Strengthen cooperation and exchange with other countries. With the development of globalisation and the rapid progress of information technology, the development in the field of electronic information engineering is no longer limited to the domestic scope, but requires extensive cooperation and exchange with other countries. Strengthening co-operation and exchanges with other countries is of great significance and importance to the development of electronic information engineering. This section will discuss the necessity and specific measures to strengthen cooperation and exchange from several aspects [8].

Firstly, strengthening cooperation and exchange with other countries helps to learn from and absorb advanced foreign technologies and experiences. There are differences in the development level and technical strength of different countries in the field of electronic information engineering, and through cooperation and exchange with other countries, we can learn and learn from their advanced technology and experience, so as to enhance our own technical level and innovation ability.

Secondly, strengthening cooperation and exchange with other countries is conducive to promoting the international development of electronic information engineering. Electronic information engineering is a global industry, and cooperation and exchange between countries can promote resource sharing, technical cooperation and market development, and promote the international development of electronic information engineering industry. Through the cooperation with other countries, we can break the geographical limitation, carry out transnational cooperation projects, and jointly explore the international market.

In addition, strengthening cooperation and exchange with other countries can also promote the flow and cultivation of talents. Talents from different countries have different professional knowledge and skills, and through cooperation and exchanges can promote the flow and cultivation of talents and enhance the comprehensive quality and international competitiveness of electronic information engineering talents.

Specifically, the following measures can be taken to strengthen cooperation and exchange with other countries.

First, strengthen international academic exchanges and cooperation, organise international conferences, seminars and other academic activities to promote exchanges and cooperation among scholars. The second is to strengthen cooperation with scientific research institutions and enterprises in other countries, carry out joint research projects and share research results and technical resources. Thirdly, we will strengthen cooperation with educational institutions in other countries, carry out student exchange and cooperation projects, and cultivate talents with an international outlook and innovative ability.

Participate in the formulation and promotion of international standards. With the rapid development of electronic information engineering, the importance of international standards in this field has become increasingly prominent. International standards not only play an important role in promoting technological innovation and industrial development, but also can improve the quality of products and services and promote smooth international trade and cooperation. Therefore, participation in the formulation and promotion of international standards has become one of the important countermeasures for the development of electronic information engineering.

Firstly, participation in the formulation of international standards can enhance the discourse power and influence of China's electronic information engineering. By actively participating in the working groups and committees of international standards, China can work with experts and scholars from other countries and regions to formulate international standards in the field of electronic information engineering, and promote the recognition and adoption of our technologies and concepts on a global scale. This not only helps to improve our country's image and status in the international arena, but also can open up a broader international market for our enterprises and products.

Secondly, participation in the formulation of international standards can promote the technological innovation and industrial upgrading of China's electronic information engineering. In the process of international standard making, it is necessary for experts and scholars from various countries to study and discuss together, so as to promote the progress and innovation of technology. By participating in the formulation of international standards, our experts and scholars can understand the global advanced technology and development trend, and improve their own technical level and innovation ability. At the same time, the formulation of international standards can also prompt our enterprises to strengthen technological research and development and innovation, improve the competitiveness and added value of products, and promote the upgrading and transformation of the electronic information engineering industry.

Finally, participation in the promotion of international standards can promote the international exchange and cooperation of China's electronic information engineering. The promotion of international standards can promote technical exchanges and experience sharing among countries, and strengthen cooperation and mutual benefit. By participating in the promotion activities of international standards, China can establish closer cooperation with enterprises, research institutions and other institutions in other countries and regions, and jointly carry out project cooperation, technical exchanges and other activities to further promote international cooperation and exchanges in the field of electronic information engineering [9].
4. Countermeasure Implementation and Effectiveness Assessment

4.1. Steps and measures for countermeasure implementation

In order to effectively promote the development of electronic information engineering, it is necessary to formulate clear steps and measures to implement relevant countermeasures. The following are the general steps and specific measures for countermeasure implementation:

Firstly, determine the goals and tasks: first of all, it is necessary to clarify the goals and tasks of the development of electronic information engineering. This includes determining the development direction, key areas and development scale of the project. At the same time, it is also necessary to take into account factors such as national development strategy and market demand.

Secondly, formulation of policies and planning: according to the defined objectives and tasks, relevant policies and planning documents should be formulated. These documents should include specific measures for government support and guidance, as well as policies to promote technological innovation, talent training and international cooperation.

Thirdly, strengthening investment and support: In order to promote the development of EEI, it is necessary to increase government investment and support. This includes measures such as increasing capital investment, establishing special funds and guiding social capital to ensure the smooth progress of the project.

Optimise the training and introduction of talents: the development of electronic information engineering cannot be separated from a high-quality talent team. Therefore, it is necessary to strengthen the professional education of electronic information engineering and cultivate more excellent talents. At the same time, it is also necessary to introduce high-level talents and teams to enhance the innovation ability and competitiveness of the project.

Promote technological innovation and research and development: technological innovation is the core driving force for the development of electronic information engineering. In order to promote technological innovation, it is necessary to strengthen basic research and applied research, and enhance the innovation ability of scientific research institutions and enterprises. At the same time, it is also necessary to promote the combination of industry, academia, research and application, and promote the transformation and application of scientific and technological achievements.

Strengthening international cooperation and exchange: electronic information engineering is a global industry, and international cooperation and exchange are crucial to the development of engineering. Therefore, there is a need to strengthen cooperation and exchanges with other countries, share resources and experience, and promote the formulation and promotion of international standards.

Supervision and Evaluation: In the process of countermeasure implementation, an effective supervision and evaluation mechanism needs to be established to identify problems and take corresponding measures in a timely manner. At the same time, it is also necessary to regularly assess the effectiveness of countermeasure implementation, and adjust and improve relevant policies and measures in a timely manner.

Through the implementation of the above steps and measures, it can effectively promote the development of electronic information engineering, enhance China's competitiveness and influence in this field, and achieve sustainable economic and social development [10].

4.2. Effectiveness assessment of countermeasure implementation

The implementation of countermeasures for the development of electronic information engineering is to solve the problems and challenges currently faced and to promote the development and enhancement of the industry. In the process of implementing countermeasures, their effects need to be assessed to determine whether the expected goals are achieved and to adjust and improve the countermeasures in a timely manner. This part will assess the effectiveness of countermeasure implementation and make corresponding recommendations.

Firstly, the assessment of the effectiveness of countermeasure implementation can be examined from several aspects. On the one hand, the effectiveness can be assessed from the perspective of policy support and guidance, including the formulation and implementation of policies and the increase in government investment and support. By assessing the effectiveness and implementation of policies, the impact and promotion of policies on the development of EEI can be understood.

Secondly, the assessment of the effectiveness of policy implementation can also be carried out from the perspective of talent training and introduction. Assessing the effectiveness of talent cultivation can be examined in terms of the employment rate of graduates, the quality of employment and the matching degree of employment positions, etc. It is also necessary to assess the effectiveness of the introduction of high-level talents and teams, including their contribution to and impact on scientific research and technological innovation.

Finally, the assessment of the effectiveness of countermeasure implementation also needs to consider technological innovation and R&D. Assessing the effects of technological innovation can be examined in terms of the development and launching of new products, and the enhancement of the competitiveness of enterprises by technological innovation. At the same time, it is also necessary to assess the effects of technological innovation and industrial transformation and upgrading, including the development and growth of related industries.

In addition, the assessment of the effectiveness of countermeasure implementation also needs to consider the situation of international cooperation and exchange. Assessing the effect of international cooperation and exchange can be examined in terms of the implementation of international cooperation projects and the transformation of results, and the formulation and promotion of international standards. By assessing the effect of international cooperation and exchange, the influence and competitiveness of electronic information engineering in the international field can be understood.

5. Conclusion

As an important support of modern society, the development of electronic information engineering is of great significance for promoting economic growth and enhancing national competitiveness. This paper analyses the
development status of electronic information engineering, combines relevant problems and challenges, and puts forward a series of countermeasures, aiming to promote the further development of the field of electronic information engineering.

From the analysis, it can be seen that electronic information engineering has been clarified in terms of definition and scope, and its development history has gone through several stages, with broad application fields and prospects. However, there are still some problems and challenges in the development process. Policy support and guidance is the key to promote the development of EE. The government should formulate relevant policies and plans, strengthen investment and support, and provide a favourable policy environment for electronic information engineering. Talent cultivation and introduction is an important guarantee to ensure the development of electronic information engineering. Strengthening professional education and cultivating high-quality professionals, as well as introducing high-level talents and teams to enhance the innovation ability and competitiveness of electronic information engineering. Technological innovation and research and development is the core driving force for the development of electronic information engineering. Strengthen basic research and applied research to promote technological innovation and industrial transformation and upgrading. International cooperation and exchange is an important way for the development of electronic information engineering. Strengthen cooperation and exchange with other countries, participate in the formulation and promotion of international standards, and enhance the international influence and competitiveness of electronic information engineering.

For the above countermeasures, the implementation steps and measures should be specific and targeted. Government departments should increase policy publicity and support to ensure the landing and implementation of policies. Colleges and universities and research institutions should strengthen talent training and scientific research investment, and enhance the level of teaching and scientific research. Enterprises should increase technological innovation and R&D investment to improve product and service quality. At the same time, all parties should strengthen co-operation and exchanges to jointly promote the development of EE.

The effect assessment of countermeasure implementation is an important part of countermeasures. The implementation effect of countermeasures can be monitored and assessed by means of indicator assessment and case analysis. The assessment results of the implementation effect will provide reference for further optimisation of countermeasures.

In summary, the research and countermeasures proposed in this paper can provide certain guidance and reference for the development of electronic information engineering. It is hoped that relevant departments, universities, research institutes and enterprises can make joint efforts to promote the further development of electronic information engineering and make greater contributions to promoting economic growth and enhancing national competitiveness.

References


