Two laws of Spatially Coherent Superposition of Eigenmodes

Authors

  • Geyang Xu

DOI:

https://doi.org/10.54097/

Keywords:

Hermite Gaussian, Coherent Superposition, Eigenmode, Structured Beams

Abstract

Unlike conventional light sources, lasers possess unique characteristics such as coherence and focused nature. Consequently, numerous applications of laser beams can be enhanced according to their spatial distribution characteristics. This paper presents two patterns of change in the intensity distributions of Hermite Gaussian beams regarding the impact of variables, including relative phase, intensity coefficient, and order of indexes. By conducting simulations in Matlab, we generate various patterns of Hermite Gaussian beams by adjusting parameters such as order indexes, relative phase, and intensity coefficients. The superposition principle is then applied to calculate the spatial intensity distribution of the combined laser beams. Our results indicate that as the order of indexes increases, the complexity of spatial distributions also increases. We analyze the symmetry and rotational properties of the Hermite Gaussian modes, revealing reflection and central symmetries, as well as rotational changes concerning the relative phase. Our discussions focus on exploring the potential for generating complex optical fields and theoretically validating experimental feasibility. We provide a schematic representation of the generation process for complex structured optical fields.

References

Pang K, Song H, Zhao Z, et al. 400-Gbit/s QPSK free-space optical communication link based on four-fold multiplexing of Hermite–Gaussian or Laguerre–Gaussian modes by varying both modal indices[J]. Optics letters, 2018, 43(16): 3889-3892.

Trichili A, Salem A B, Dudley A, et al. Encoding information using Laguerre Gaussian modes over free space turbulence media[J]. Optics letters, 2016, 41(13): 3086-3089.

Restuccia S, Giovannini D, Gibson G, et al. Comparing the information capacity of Laguerre–Gaussian and Hermite–Gaussian modal sets in a finite-aperture system[J]. Optics express, 2016, 24(24): 27127-27136.

Mirhosseini M, Magana-Loaiza O S, Chen C, et al. Rapid generation of light beams carrying orbital angular momentum[J]. Optics express, 2013, 21(25): 30196-30203.

Davis J A, Cottrell D M, Campos J, et al. Encoding amplitude information onto phase-only filters[J]. Applied optics, 1999, 38(23): 5004-5013.

Wang J, Yang J Y, Fazal I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature photonics, 2012, 6(7): 488-496.

Zhang Z, Gao Y, Li X, et al. Second harmonic generation of laser beams in transverse mode locking states[J]. Advanced Photonics, 2022, 4(2): 026002-026002.

Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical review A, 1992, 45(11): 8185.

Wang J, Yang J Y, Fazal I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature photonics, 2012, 6(7): 488-496.

Mirhosseini M, Malik M, Shi Z, et al. Efficient separation of the orbital angular momentum eigenstates of light[J]. Nature communications, 2013, 4(1): 2781.

Cerf N J, Bourennane M, Karlsson A, et al. Security of quantum key distribution using d-level systems[J]. Physical review letters, 2002, 88(12): 127902.

M. Bourennane, A. Karlsson, G. Bjork, N. Gisin, and N. J. Cerf, “Quantum key distribution using multilevel encoding: security analysis,” J. Phys. A 35, 10065–10076 (2002).

Ando T, Ohtake Y, Matsumoto N, et al. Mode purities of Laguerre–Gaussian beams generated via complex-amplitude modulation using phase-only spatial light modulators[J]. Optics letters, 2009, 34(1): 34-36.

Downloads

Published

28-06-2024

Issue

Section

Articles

How to Cite

Xu, G. (2024). Two laws of Spatially Coherent Superposition of Eigenmodes. Journal of Computing and Electronic Information Management, 13(2), 87-90. https://doi.org/10.54097/