Teaching Measures Improvement and Optimization for the Course “Principles and Applications of Optoelectronic Devices”

Liangliang Gu

School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093 China

Abstract: In the process of promoting the transformation of the social industrial structure, high-level talents are indispensable elements. Therefore, emphasizing the cultivation of high-level talents is necessary and important. Combining with the current social practice for analysis, to cultivate high-level talents, it is necessary to emphasize the construction of high-level specialties. Therefore, at the current stage, the country actively promotes the construction of first-class undergraduate schools and specialties. In the process of constructing first-class undergraduate schools and specialties, curriculum construction and optimization are indispensable contents. Therefore, based on the perspective of first-class undergraduate curriculum construction, the optimization of specific courses and the utilization of teaching reform measures are analyzed, which can provide reference for practice.

Keywords: First-class Undergraduate; Curriculum Optimization; Teaching Reform.

1. Introduction

In the current social environment, continuously optimizing teaching, improving teaching quality, and cultivating more high-quality talents adaptable to the development of societal industries are specific directions for the development of higher education in China. Currently, to further advance national higher education, China has initiated the "Double First-Class" university and specialty construction plan. Based on the practical needs of constructing first-class undergraduate schools and specialties, it is proposed to analyze and evaluate specific courses in undergraduate institutions and to conduct analysis and discussion on curriculum optimization and teaching reform based on the evaluation results. This can provide more effective references for the current stage of educational work. Below is a summary of the optimization and teaching improvement measures for the course "Principles and Applications of Optoelectronic Devices" based on the perspective of first-class undergraduate curriculum construction.

2. Clarifying the Specific Goals and Directions of First-class Undergraduate Curriculum Construction

To optimize the course "Principles and Applications of Optoelectronic Devices" within the framework of first-class undergraduate curriculum construction, it is necessary to determine the objectives and directions of course improvement based on the requirements of first-class curriculum construction. Regarding the course "Principles and Applications of Optoelectronic Devices", its goals and directions are mainly as follows:

1) Course objectives: The main objective of the course "Principles and Applications of Optoelectronic Devices" is to enable students to master the main theoretical content of the course.

2) Student competency objectives: In the process of curriculum construction, it is necessary to consider the specific needs of student competency development to optimize the course content and reform the course delivery. For example, in the construction of the course "Principles and Applications of Optoelectronic Devices", it is necessary to cultivate students' theoretical analysis ability as well as their ability to apply theory. Therefore, in educational practice, it is necessary to design specific teaching content based on student competency development and to differentiate teaching levels. Only in this way can the final teaching work achieve the expected goals.

3. Emphasizing the Optimization of Course Content and Teaching Methods:

The optimization of course content and teaching methods in the improvement of the "Principles and Applications of Optoelectronic Devices" course is equally vital and cannot be overlooked. Regarding the optimization of course content, the main focus is on reducing the proportion of theoretical content in the current teaching system while appropriately increasing the proportion of practical course content. This ensures a balance between theoretical and practical content, leading to a more prominent teaching effect.

In terms of optimizing teaching methods, it primarily involves shifting away from traditional "lecture-style" teaching methods towards methods that encourage students to expand their thinking. For example, in the current teaching of "Principles and Applications of Optoelectronic Devices," a new approach combining mind maps and PowerPoint (PPT) presentations can be utilized.

1) Mind maps: Based on current educational practices, the use of mind maps in teaching has a significant impact by diverging students' thinking. Students can engage in critical thinking based on the content presented by the teacher and establish connections between concepts. This approach is valuable for students in constructing their knowledge systems and developing logical thinking skills.

2) PPT presentations: The use of PowerPoint presentations is widespread in current educational practices. This method
helps students organize the structure of their learning, enhancing the completeness of their knowledge systems. In the case of "Principles and Applications of Optoelectronic Devices," using PPT presentations allows students to understand the specific principles and applications of optoelectronic devices, contributing positively to their practical skill development.

Overall, optimizing both course content and teaching methods is essential for enhancing the effectiveness of teaching and facilitating students' learning experiences in the "Principles and Applications of Optoelectronic Devices" course.

4. Based on Market Demand for Talent, Improving Teaching Methods:

Focusing on market demand for talent and improving current teaching methods holds significant value in advancing teaching practices and enhancing teaching effectiveness. The ultimate goal of education is to serve the current societal and industrial development. Therefore, in the current environment, it is crucial to consider methods of talent cultivation and educational practices that better align with market needs.

For instance, in today's market, businesses require talent who can effectively apply theoretical knowledge to solve practical problems. Thus, in educational practice, it's essential to prioritize both theory and practice in teaching. To achieve synchronous progress in theory and practice, the following teaching methods can be employed:

- Project-based learning: This method involves engaging students in mature projects during the teaching process. Through participation in projects, students can reinforce their learning, and also train their technical skills and practical abilities, which is beneficial for their growth.
- Problem-oriented teaching: This method focuses on teaching based on problem-solving. In educational practice, guiding students to learn theory through solving real-world problems serves as a fundamental approach. Additionally, students engage in practical analysis, which allows them to deeply understand the causes of problems and their solutions. Over time, students' abilities will significantly improve.

By adopting these teaching methods that emphasize practical application and problem-solving, educators can better prepare students to meet the demands of the market and effectively contribute to the workforce.

5. Constructing a Dual-teacher Team to Enhance Teaching Effectiveness:

In educational practice, teachers are indispensable elements, and their level significantly affects the final educational outcomes. Therefore, emphasizing the construction of the teaching staff is essential in educational practice. Based on an analysis of current undergraduate education practices, to truly emphasize both the theoretical and technical proficiency of students, it is necessary to particularly emphasize the construction of a dual-teacher team. On the one hand, schools need to comprehensively evaluate the teachers for the "Principles and Applications of Optoelectronic Devices" course based on the objectives of first-class curriculum construction. They should select theoretical instructors who can meet the current educational needs. On the other hand, schools need to cooperate with enterprises to introduce specialized technical personnel or project managers to participate in educational work and guide students' technical progress. Through the comprehensive training of both theoretical instructors and technical professionals, the level of students ultimately cultivated will better meet practical needs.

6. Conclusion

In conclusion, within the context of first-class undergraduate institutions and first-class professional development, each undergraduate institution needs to reflect on the specific curriculum construction of their own school based on the objectives of first-class discipline construction. This is to achieve the continuous advancement of curriculum construction. To achieve good results in the construction of the "Principles and Applications of Optoelectronic Devices" course within the framework of first-class undergraduate curriculum construction, it is necessary to analyze methods for course optimization and specific measures for teaching improvement. This article elaborates on these aspects, aiming to provide reference for current educational practices, thereby promoting improvements in educational effectiveness and ultimately achieving the goal of cultivating professional and high-level talents.

References

