School-Enterprise Synergy: Exploration and Practice of the Cooperation Model between Professional Teachers and Enterprise Engineers

Qingq Yang *, Pengda Zou

Abstract: The purpose of this paper is to discuss how to construct the collaboration between Professional teachers and enterprise engineers in curriculum construction and teaching, and to solve the key problems such as insufficient articulation between teaching content and actual technical problems of industry, and the ability of teaching faculty themselves to solve actual problems of industry. Through in-depth analysis of the theoretical basis and practical operation of the school-enterprise collaborative cooperation model, feasible solutions are proposed to provide insights for the improvement of the teaching quality of vocational colleges and universities.

Keywords: University-enterprise Collaboration; Professional Teachers; Enterprise Engineers; Curriculum Construction; Cooperation Model.

1. Introduction

Education in vocational colleges and universities aims to train students to master practical skills and meet the needs of industry. With the rapid development of industry and the ever-changing technology, the curriculum construction of vocational colleges and universities must keep pace with it to ensure that students are equipped with the required practical working ability after graduation. However, traditional curriculum design often fails to keep pace with industry, i.e., there is an obvious disconnect between teaching content and actual technical problems in industry. This disconnect leads to a large gap between what students learn and the skills they need for actual work. This phenomenon not only affects students' competitiveness in employment, but also weakens the effectiveness and sustainability of vocational education.

In this context, the school-enterprise collaboration model has become an effective way to solve the problem of disconnected teaching quality. School-enterprise cooperation can not only help schools better understand the actual needs of the industry, but also allow enterprises to directly participate in the curriculum construction and teaching process, ensuring that the teaching content is closely integrated with industrial technology issues. Through cooperation with enterprises, vocational colleges and universities can more accurately grasp the development trend of the industry, adjust the curriculum in a timely manner, and provide students with more practical educational content that meets the market demand, thus improving the quality of teaching and cultivating professionals more adapted to the reality of work.

2. Theoretical Analysis of the School-Enterprise Collaboration Model

2.1. Importance and Necessity of School-Enterprise Cooperation

The cooperation between vocational colleges and enterprises has important significance and value. First of all, school-enterprise cooperation can help vocational colleges and universities better understand the development trend and demand of the industry, adjust and update the teaching content in time, make it consistent with the market demand, and ensure the practicality and effectiveness of education and training. Secondly, through cooperation with enterprises, vocational colleges and universities can provide richer practice opportunities for students, so that they can come into contact with real work scenes and understand the industry standards and operation norms, thus improving their competitiveness in employment. In addition, school-enterprise cooperation can provide support for the training of teachers in vocational colleges and universities, so that teachers can be more aware of the latest developments and technical requirements of the industry, thus improving their teaching level and professionalism.

The guiding effect of industrial demand on teaching content is also an important manifestation of school-enterprise cooperation. With the rapid development of the industry and the continuous updating of technology, the skill requirements of enterprises for employees are also increasing, therefore, vocational colleges need to pay close attention to the development trend of the industry and technology demand, adjust and optimize the teaching content in a timely manner, to ensure that the students trained have the skills and qualities that meet the market demand. Through school-enterprise cooperation, vocational colleges and universities can work together with enterprises to carry out activities such as curriculum construction, practical teaching and scientific research projects, so as to deeply integrate into the industry and closely match the needs of enterprises, thus better delivering talents that meet the requirements of the industry.

2.2. Theoretical Framework and Model of School-Enterprise Collaboration

The cooperation modes of university-enterprise collaboration are various, but they mainly include technology development and innovation, talent cultivation and practical teaching, scientific research cooperation and transformation...
3. Exploration of the Mode of Cooperation between Professional Teachers and Enterprise Engineers

3.1. Communication and Cooperation Mechanisms

In building the cooperation model between Professional teachers and enterprise engineers, it is crucial to establish an effective communication and cooperation mechanism. First, enterprise instructors and school teachers need to establish a frequent and timely communication mechanism. Regular meetings, the establishment of contact groups and communication platforms can promote information exchange and sharing to ensure that both sides maintain a consistent understanding of course design and teaching progress. Secondly, a clear division of labor and close collaboration is an important guarantee for the communication mechanism. Clearly define their respective responsibilities and tasks, establish a two-way feedback mechanism, timely communication and problem solving, to ensure the smooth progress of cooperation.

3.2. Curriculum Design and Updating

The joint participation of teachers and enterprise engineers in curriculum design and updating is a key link in building a cooperative model. First, the establishment of a curriculum design working group is an effective way to promote cooperation. The working group consists of school teachers and enterprise engineers to discuss the course objectives, contents and teaching methods to ensure that the course design meets the needs of the industry and students' learning needs. Secondly, utilizing enterprise resources for curriculum updating and practical verification is an important means of curriculum design. Through cooperation with enterprises, we can obtain the latest technical information, case studies and practical experience to provide strong support for the updating and improvement of the curriculum and to ensure that the course content keeps pace with the development of industrial technology.

3.3. Practical Sessions and Project Cooperation

The arrangement of practical opportunities for students to participate in school-enterprise cooperation projects and the exploration and practice of combining the practical aspects with the actual problems of the industry are important parts of the cooperation model. First of all, in the arrangement of practice opportunities, schools need to establish a perfect mechanism for student participation, clarify the conditions and selection criteria for students, and provide relevant training and guidance to ensure that students can fully participate in school-enterprise cooperation programs. Secondly, the combination of practical aspects and actual industrial problems is the key to cultivate students' practical ability and problem-solving ability. Schools can arrange for students to participate in the actual operation of enterprise projects and the process of solving practical problems, so that through cooperation with enterprise engineers, students can gain a deeper understanding of the industry's needs, master practical skills, and cultivate problem-solving ability and innovative consciousness.

Through the above practical operation, the cooperation model between Professional teachers and enterprise engineers
can be deeply explored and perfected to provide more effective support and guarantee for the improvement of teaching quality in higher vocational colleges and universities.

4. Effectiveness and Challenges of Operationalization

4.1. Improvement of the Interface Between Teaching Content and Actual Technological Problems in Industry

Through the cooperation mode between Professional teachers and enterprise engineers, the connection between teaching content and actual technical problems of the industry can be significantly improved. Firstly, by updating the teaching content through cooperative projects, teachers can learn the latest technical needs and development trends of the industry in a timely manner, and incorporate this information into the curriculum design and teaching practice to ensure that the teaching content is consistent with the needs of the industry. Secondly, the establishment of effective communication channels between teachers and enterprise engineers is also an important way to promote the convergence of teaching content and industrial technology issues. Through regular communication and exchanges, teachers can gain a deep understanding of the technical problems and solutions in the actual operation of enterprises, adjust the course content and teaching methods in a timely manner, and ensure the improvement of teaching quality.

4.2. Improvement of Teachers' and Students' Competencies

The cooperation mode between Professional teachers and enterprise engineers not only helps to update and optimize the teaching content, but also improves the ability level of teachers and students. First of all, teachers can improve their professional skills and practical experience by participating in practical projects. The cooperation with enterprise engineers enables teachers to deeply understand the latest technological developments and problem-solving methods in the industry, thus improving their teaching level and professionalism. Secondly, students can also improve their practical ability and problem-solving ability by participating in practical projects. Through the cooperation with enterprise engineers, students can come into contact with real work scenes, understand the solution of practical problems, and cultivate the ability of problem solving and innovative thinking.

4.3. Challenges and Solutions

However, the model of collaboration between Professional faculty and corporate engineers faces some challenges. One of them is the communication difficulties caused by cultural differences between schools and enterprises. Different cultural backgrounds and working habits may lead to communication barriers and affect the smooth progress of cooperation. The key to solving this challenge lies in strengthening cross-border exchanges and enhancing mutual understanding and respect between the two sides. In addition, insufficient matching of teaching resources with enterprise needs is also an important issue. To address this challenge, schools need to strengthen the integration and sharing of resources, establish stable cooperative relationships with enterprises, and regularly evaluate and adjust the curriculum to ensure that the teaching content is in line with the market demand, so as to improve the quality of teaching.

Through the analysis of the effects and challenges of practical operation, the importance and value of the cooperation model between Professional teachers and enterprise engineers can be better recognized, as well as how to deal with the challenges faced, to further promote the sustainable development and improvement of the school-enterprise cooperation model.

5. Conclusion

Through the exploration of the cooperation mode between Professional teachers and enterprise engineers, this paper provides practical paths and strategies for the improvement of teaching quality in higher vocational colleges and universities. In the future, it is necessary to further improve the school-enterprise cooperation model, promote the deep integration of education and industry, and provide more powerful support for the cultivation of high-quality technical talents.

Acknowledgments

This work was supported by a grant WZYBSZD202103 from Wenzhou Polytechnic.

References