Research on the Construction and Application of Consumer Based Evaluation Standards for Automotive Human Machine Interaction

Dehuan Kong a, Bing Wei b

China Automotive Technology and Research Center Co., Ltd. Tianjin, 300300, China

a kongdehan@catarc.ac.cn, b weibing@catarc.ac.cn

Abstract: Automotive human-computer interaction technology plays an important role in modern automobiles. In order to improve user experience, it is crucial to evaluate the performance of automotive human-computer interaction systems. This article aims to establish a consumer-based evaluation standard for automotive human-computer interaction based on consumer needs, and conduct relevant application research.

Keywords: Automotive Human-computer Interaction Technology; User Experience; Consumer.

1. Introduction

In the era of rapid technological development, cars are no longer just a means of transportation, but have become an indispensable part of people's lives. Among them, the human-computer interaction system of cars has attracted a large number of consumers' attention. In order to meet consumers' demand for automotive technology, it is crucial to conduct research on the construction and application of consumer automotive human-computer interaction evaluation standards.

2. The Integration of Mobile Internet and Artificial Intelligence

2.1. Consumer Expectations for Mobile Connectivity and Artificial Intelligence

With the popularity of mobile internet devices such as smartphones and smart homes, consumers also expect the human-computer interaction system of cars to be seamlessly connected to these devices, and to be able to easily access information and control vehicle functions. At the same time, consumers have increasingly high expectations for the application of artificial intelligence, hoping that the human-computer interaction system of cars can have more intelligent functions and interaction methods. Driven by technology, cars are gradually being promoted to intelligent mobile terminals. Consumers expect cars to have more intelligent functions, such as autonomous driving and intelligent voice interaction. This not only improves driving safety, but also provides a more convenient and comfortable driving experience. The widespread application of mobile internet technology has led to a deep integration of cars and smartphones. Consumers expect seamless connection between mobile phones and cars, enabling remote control of vehicles, viewing of vehicle condition information, and appointment for maintenance. This will greatly facilitate users' lives, improve the convenience and intelligence level of car use.

With the further development of artificial intelligence technology, consumers' expectations for cars to understand and adapt to personal needs are also increasing. They hope that cars can provide personalized driving experiences and services through learning and analysis. For example, recommend the best route based on user driving habits, provide personalized music, atmosphere settings, etc. Driving safety has always been a focus of concern for consumers, and the application of intelligent safety systems has become one of their expectations for cars. Consumers hope that cars can use artificial intelligence technology to timely perceive and prevent potential hazards, such as automatic braking, blind spot monitoring, and other functions. This will greatly enhance the driver's sense of safety and reduce the occurrence of traffic accidents.

2.2. Design Experiments to Evaluate User Experience

By designing experiments, the human-computer interaction system of a car can be evaluated from the user's perspective, including the friendliness of the interface and the convenience of operation. At the same time, feedback from users can be collected through methods such as questionnaire surveys, providing reference for the development of evaluation standards. In order to comprehensively evaluate the user experience, quantitative and qualitative evaluation methods can be used. In quantitative evaluation, indexed data is collected through methods such as questionnaire surveys and user behavior data. At the same time, qualitative evaluation can obtain users' subjective feelings and opinions about cars through in-depth interviews, focus group discussions, and other methods. Combining these two evaluation methods can provide a more comprehensive understanding of users' perception and satisfaction with cars. Once sufficient data is collected, the results can be analyzed and interpreted. During the analysis phase, statistical methods are used to process the data to obtain reliable conclusions. At the same time, it is also necessary to interpret the results, convert the data into meaningful insights, and propose optimization suggestions for different versions of cars. Through such analysis and interpretation, we can gain a deeper understanding of the differences in user experience and identify areas for improvement.
3. The Increasing Demand for Personalization and Customization

3.1. Consumers’ Pursuit of Personalized and Customized Experiences

Consumers hope to customize the car's human-computer interaction system according to their preferences, making it more in line with personalized needs. This personalized demand not only includes aspects such as appearance and audio, but also involves personalized settings for the car's human-computer interaction interface, operation mode, and voice control. With the development of the times, consumers' pursuit of personalized and customized car experiences is no longer limited to simple means of transportation. Nowadays, they hope to have a car that showcases their personal style to showcase their unique taste and lifestyle. Therefore, personalized customization has become one of the most urgent needs in the minds of current consumers.

Everyone is unique, and as a result, consumers' demand for cars varies greatly. Some people prefer simple and fashionable exterior designs, while others prefer a luxurious and stylish image. At the same time, there are also some people who have higher requirements for car functionality and driving experience. Therefore, automobile manufacturers need to provide consumers with diverse choices based on individual differences to meet their personalized needs. In addition to appearance and functionality, consumers also have a high pursuit of car details. For example, the material and comfort of the seats, the sound quality of the audio system, the layout of the interior space, and so on. These details determine the comfort and experience of consumers during the driving process. Therefore, car manufacturers should pay attention to every detail and create a unique driving experience for consumers.

In addition to the car itself, personalized service is also one of the focuses of consumers' attention towards the car. Consumers hope to receive after-sales service that matches their personality to ensure a good long-term use experience of the car. For example, regular maintenance, fast repair response time, customized value-added services, and so on. These personalized services can make consumers feel the care and professionalism of the brand, thereby enhancing their trust and loyalty to the car. With the development of the times and the evolution of consumption concepts, consumers' demand for cars has also undergone significant changes. They are no longer satisfied with simple means of transportation, but pursue a unique car that reflects personal taste and lifestyle. Therefore, car manufacturers should keep up with the trend, provide personalized customization options, pay attention to details and personalized services, to meet consumers' pursuit of personalized and customized car experiences.

3.2. Establishing a Theoretical Model to Analyze the Effectiveness of Human-Computer Interaction

Combining professional knowledge in consumer psychology, ergonomics, and other fields, establish a theoretical model to analyze the impact of different factors on the effectiveness of human-computer interaction. Through quantitative analysis, it can provide scientific basis for automobile manufacturers to improve and optimize the human-machine interaction system of automobiles. Title: Theoretical Model Analysis of Automotive Human Machine Interaction. With the rapid development of technology, the effectiveness of automotive human-machine interaction has become a focus of attention for car manufacturers and consumers. This article aims to establish a theoretical model to analyze the human-computer interaction effect of automobiles and explore how to improve user experience and surpass other competitors. Human machine interaction refers to the process of information exchange and operation between humans and machines. It has important significance and role in the automotive field, which can improve the driver and passenger's control over the automotive system, enhance safety and comfort. When analyzing the human-computer interaction effect of automobiles, the following key factors need to be considered: availability, comprehensibility, acceptability, and scalability. These factors are important indicators for evaluating the human-computer interaction performance of automobiles. Good interface design can enhance user experience and create better human-computer interaction effects. In automotive human-computer interaction, interface design should consider aspects such as visualization, interaction methods, and feedback mechanisms to meet user needs and expectations.

Speech recognition technology plays an important role in human-computer interaction in automobiles. Through voice commands, drivers can more conveniently control the car system, avoid distractions, and improve driving safety. The rapid development of touch screen technology has brought new possibilities for human-computer interaction in automobiles, but it has also brought some challenges. How to design a touchscreen interface that is easy to operate and responsive is a problem that needs to be solved. With the development of artificial intelligence and big data, automotive human-computer interaction will move towards a more intelligent, personalized, and automated direction. Through the application of technologies such as deep learning and emotional analysis, cars will be able to better understand user needs and provide a better human-computer interaction experience.

4. Design of Evaluation Standards for Human-Computer Interaction in Consumers’ Cars

4.1. Analysis and Induction of Consumer Needs

The success of automotive human-computer interaction systems directly affects consumer satisfaction. Therefore, it is first necessary to analyze and summarize consumers' demand for human-computer interaction in automobiles. By conducting market research, questionnaire surveys, and other methods, we aim to understand consumers' expectations for user interfaces, speech recognition, gesture control, and other aspects, in order to provide data support for the establishment of evaluation criteria. With the development of the economy and the improvement of people's living standards, automobiles have become an indispensable part of modern people's lives. The automotive industry has made tremendous progress in the past few decades, meeting consumers' needs for convenient and comfortable travel. In the future, the automotive market will continue to grow, so we need to conduct in-depth analysis and summarization of consumer demand.
With the increase in the number of traffic accidents, consumers’ demand for car safety is also rapidly increasing. They hope to purchase cars that provide good protection measures, such as reinforced body structure, airbag systems, and intelligent driving assistance functions. These safety features can greatly reduce the risk of traffic accidents and provide passengers and drivers with a higher sense of safety. The increase in environmental awareness has led to a growing demand for environmentally friendly cars among consumers. They hope to purchase vehicles that can reduce exhaust emissions, such as electric vehicles or hybrid vehicles. These cars use clean energy to reduce environmental pollution and contribute to sustainable development in the future.

Consumer demand for car comfort is also constantly increasing. They hope to purchase cars equipped with luxury seats, advanced audio systems, and intelligent entertainment features. The improvement of comfort can make long-distance driving more relaxed and enjoyable, providing passengers and drivers with a better experience. With the continuous progress of technology, the demand for smart cars is also gradually increasing. Consumers hope to purchase cars equipped with artificial intelligence, autonomous driving, and internet connectivity. These intelligent car functions can provide convenience such as navigation assistance, autonomous driving, and remote control, meeting consumers’ pursuit of high-tech life.

4.2. Optimization and Innovation of Interface Design

The user interface is the most direct part of the automotive human-computer interaction system that comes into contact with users, and its design is crucial for the user experience. By optimizing interface layout, icon design, and color matching, users' understanding and feedback on operations can be enhanced, thereby enhancing the connection between users and the car. At the same time, drawing on innovative design ideas from other fields, injecting new elements and concepts into automotive interface design to make it more attractive. In today's rapidly changing era of technology, cars are no longer just a means of transportation, but also an experience. As an indispensable part of people's lives, the optimization and innovation of automotive interface design are becoming increasingly important.

With the development of technology, car interface design needs to meet people's expectations for response speed. One problem with existing car interface design is that the response speed is too slow, which appears to lag behind in people's fast-paced lives. To address this issue, we can integrate electronic systems with vehicle sensors to achieve real-time data collection and processing. By optimizing software algorithms, the response speed of the system is significantly improved, allowing the driver's instructions to receive immediate feedback. In addition, ease of operation is also an important aspect that needs to be addressed in automotive interface design. By streamlining the user interface, reducing menu hierarchy, and designing intuitive buttons and icons, combined with clear text prompts, it can reduce users' cognitive burden and improve the convenience of car operation.

Introducing personalized customization features into car interface design is a crucial step in surpassing other cars. By allowing drivers to freely choose instrument panel skins, sound effects, and display settings, it meets the personalized needs of different groups of people and increases driving pleasure. In addition, intelligent interaction technology is also an important direction for optimizing automotive interface design. By utilizing advanced technologies such as voice control, gesture recognition, and artificial intelligence, cars have become more intelligent and natural communication platforms between users and vehicles. For example, drivers can adjust their seats, navigate their destinations, or switch music through simple voice commands to improve driving safety and convenience. The application of virtual reality and augmented reality technology will bring new possibilities for automotive interface design. By projecting virtual instrument panels and navigation information at specific locations in the driver's field of view, seamless connection between the driver and the vehicle is achieved, improving driving safety and operational convenience. In addition, using virtual reality technology, drivers can enjoy a more immersive driving experience. For example, simulating actual driving scenes through virtual landscapes allows drivers to experience real driving pleasure, thereby improving driving motivation and passion.

4.3. Precision and Intelligence of Speech Recognition Technology

Speech recognition is one of the widely used technologies in current automotive human-computer interaction systems. In order to improve the convenience of user operation, speech recognition technology needs to have high accuracy and intelligent characteristics. By continuously optimizing speech recognition algorithms, increasing training corpora, and enhancing natural language processing capabilities, accurate interpretation and intelligent response to user instructions can be achieved. With the continuous progress of technology and people's pursuit of convenience, car speech recognition technology is gradually becoming an essential tool for modern travel. Automotive speech recognition technology plays a crucial role in improving driving experience, enhancing safety, and achieving human-machine interaction due to its excellent accuracy and intelligent characteristics. Automotive speech recognition technology can accurately capture the driver's voice commands through a highly sensitive microphone. Whether driving at high speeds or in complex traffic environments, the system can accurately recognize and understand the driver's voice, ensuring that instructions are conveyed in place.

Through advanced technologies such as deep learning and natural language processing, automotive speech recognition systems continuously optimize their accuracy. This means that under different pronunciations and accents, the system can quickly and accurately convert speech into text, providing drivers with a more thoughtful and efficient driving experience. By utilizing car speech recognition technology, drivers can perform multiple functions through simple passwords, such as adjusting seats, turning on air conditioning, and navigating. The system can not only accurately understand complex instructions, but also personalized settings according to the habits and needs of different drivers, achieving truly intelligent travel. In daily driving, drivers often need to obtain various information, such as road conditions, weather, and maps. By interacting with intelligent voice assistants for Q&A, drivers can easily obtain the required information without the need for distraction. It not only greatly improves driving safety, but also brings a more enjoyable and worry-free travel experience to drivers and passengers.
4.4. Sensitivity and Reliability of Gesture Control

Gesture control, as an emerging interactive method, provides users with a more intuitive and convenient operating experience. However, the sensitivity and reliability of gesture control technology cannot be ignored in terms of its impact on user experience. By optimizing the sensitivity of sensors, enhancing the robustness of gesture recognition, and combining deep learning methods, the performance of gesture control technology in automotive human-computer interaction is being improved. With the rapid development of artificial intelligence and sensor technology, automotive gesture control technology is becoming an important part of the driving experience. Gesture control technology can control a car by recognizing the driver's gesture movements, enabling the driver to interact more freely and intuitively with the car. Among them, the improvement of sensitivity is the key to ensuring the ideal effect of gesture control technology. With the continuous progress of technology, the reliability of automotive gesture control technology has been significantly improved. The improvement of sensors and algorithms makes gesture recognition more accurate, greatly reducing the risk of misoperation. A reliable gesture control system can capture the driver's gestures in real-time and convert them into instructions, ensuring that the driver can safely operate the car.

Gesture control technology, as an innovative control method, is gradually entering people's lives. In addition to its application in the automotive field, gesture control technology can also be extended to other means of transportation, such as airplanes, ships, etc. In the future, with the continuous improvement of gesture control technology, it is expected to become a new standard for travel, bringing drivers a more convenient and intelligent driving experience. The sensitivity and reliability of automotive gesture control technology are important factors in achieving a high-quality driving experience. By continuously improving the sensitivity and reliability of gesture recognition, it is foreseeable that more drivers will choose gesture control technology in the future, enjoying more convenient and intelligent driving pleasure. Car gesture control technology will undoubtedly play an important role in the future transportation field, bringing people safer and more convenient modes of travel.

5. Summary

In summary, the establishment and application research of consumer automotive human-machine interaction evaluation standards are of great significance for improving the automotive human-machine interaction experience. By meeting consumers’ expectations for mobile connectivity and personalized customization needs, as well as adopting methods such as user experience assessment and professional domain modeling analysis, we can continuously improve and optimize the human-machine interaction system of cars, providing consumers with a better driving experience. Therefore, further promoting the development of consumer car human-computer interaction evaluation standards is a necessary and promising research direction.

References

