Competitiveness Analysis and Future Development Trend of Solar-powered Ships in the International Maritime Transport Market

Rongjun Zhang 1,2, Shukui Zhang 1,2

1 Jiangsu Maritime Institute Navigation College, Nanjing Jiangsu 211170, China
2 Digital Engineering Technology Research and Development Center for Maritime Safety and Security, Nanjing Jiangsu, 211072, China

Abstract: With the increasingly serious global environmental problems, the international marine transportation industry is seeking more environmentally friendly and efficient modes of transportation. In this study, the competitiveness of solar-powered ships in the international maritime transport market is deeply analyzed, and its future development trend is discussed. With its advantages of zero emission, low operating cost and environmental protection, solar-powered ships are gradually attracting market attention. By comparing the differences between solar-powered ships and traditional fuel-fired ships in operating costs, environmental performance and market competitiveness, it is found that solar-powered ships have significant economic and environmental benefits in the long run. Although the initial investment cost is high, the operating cost of solar-powered ships is much lower than that of traditional fuel-powered ships, especially when the oil price fluctuates greatly. In addition, the advantages of solar-powered ships in reducing greenhouse gas emissions and marine pollution are in line with the global trend of green and low-carbon development and help to enhance the environmental image of the shipping industry. In the future, with technological innovation and policy support, solar-powered ships are expected to further improve their photovoltaic conversion efficiency and optimize hull design, thus enhancing market competitiveness. At the same time, the upstream and downstream enterprises in the industry chain will also usher in opportunities for coordinated development and jointly promote the development of the solar ship market. As a new green transportation mode in the international marine transportation market, solar-powered ships have broad development prospects and huge market potential.

Keywords: Competitiveness Analysis; Development Trend; Solar-powered Ships; International Maritime Transport.

1. Introduction

With the sustained development of the global economy, the international maritime transport market is becoming increasingly prosperous. As the main tool of cargo transport, ships play a decisive role in global trade. However, the traditional oil-fired ships have produced a lot of greenhouse gas emissions and marine pollution during their operation, which runs counter to the concept of sustainable development and green environmental protection advocated by the world at present. Therefore, the shipping industry is facing unprecedented environmental pressure and challenges, and it is urgent to find a more environmentally friendly and efficient mode of transportation.

As a new and environmentally friendly means of transportation, solar-powered ships have received extensive attention in recent years. It uses solar energy as a power source, which can not only significantly reduce fuel consumption and greenhouse gas emissions, but also reduce operating costs and improve transportation efficiency [1-2]. Under the global background of advocating green and low-carbon development, solar-powered ships undoubtedly provide a feasible green solution for the international marine transportation market.

The purpose of this study is to deeply explore the competitiveness of solar-powered ships in the international maritime transport market and predict its future development trend. By comparing and analyzing the differences between solar-powered ships and traditional fuel-powered ships in operating costs, environmental performance and market competitiveness, we can fully understand the advantages and potential of solar-powered ships. At the same time, combined with the current policy environment, technological innovation and market demand, the future development of solar-powered ships is prospected in order to provide useful reference for the green transformation of shipping industry.

2. Technology and Application Status of Solar Ship

As a representative of green shipping, solar-powered ships are gradually occupying a place in the international marine transportation market. This kind of ship uses solar photovoltaic technology to convert solar energy into electric energy through solar panels installed on the hull, thus driving the ship forward [3].

The core of solar ship technology lies in its unique energy system. Solar panels are the key components of this system, and they are carefully installed on the hull surface to capture solar energy to the maximum extent. These panels convert solar energy into electric energy through photovoltaic effect and store it in the battery system of the ship [4-5]. In addition, the solar ship is equipped with advanced energy management system to ensure the efficient use of electric energy and the stable operation of the ship. In addition to the energy system, the solar ship has also been optimized in hull design and material selection. In order to reduce the weight of the hull and improve energy efficiency, solar-powered ships usually adopt lightweight materials and streamlined design. These designs not only reduce the resistance of the ship, but also improve its sailing speed and range [6].

In terms of application, solar-powered ships have been practiced around the world. Some pioneering enterprises and
organizations have begun to use solar-powered ships for cargo transportation and sea cruising (Figure 1). These ships have demonstrated significant environmental advantages, reducing fuel consumption and greenhouse gas emissions. At the same time, because solar energy is a free energy source, solar-powered ships also have significant advantages in operating costs [7].

Figure 1. The first zero-emission cruise ship of Norwegian cruise company Hurtigruten

However, solar-powered ships still face some challenges in practical application. For example, the efficiency and stability of solar panels need to be further improved to meet the energy demand under long-term navigation and bad weather conditions. In addition, the initial investment cost of solar-powered ships is relatively high, which may limit its application in some small shipping companies [8-9]. Nevertheless, as a representative of green shipping, the development prospect of solar-powered ships is still widely optimistic. With the continuous progress of technology and the reduction of cost, solar-powered ships are expected to become an important force in the international marine transportation market in the future. At the same time, with the increasing global attention to environmental protection and sustainable development, solar-powered ships will also get more policy support and market recognition.

3. Analysis on the Competitiveness of Solar-Powered Ships in the International Maritime Transport Market

3.1. Operating Cost Comparison

The main power source of traditional oil-fired ships is oil or heavy oil, and its price is greatly affected by the fluctuation of international oil prices. In recent years, with the rising oil price, the operating cost of oil-fueled ships has also climbed. In addition, the extra costs of fuel storage, transportation and refueling need to be considered during the voyage of fuel ships. In contrast, solar-powered ships use solar energy as a power source, and almost no fuel is consumed, thus greatly reducing fuel costs. Although the initial investment of solar panels may be high, in the long run, solar ships have significant advantages in fuel costs, especially when oil prices are high.

The power system of the traditional oil tanker is complex in structure, including multiple mechanical parts and hydraulic system, which needs regular maintenance and overhaul. These maintenance works are not only time consuming, but also expensive. At the same time, the exhaust system of fuel ships also needs to be cleaned and replaced regularly, so as to reduce the impact of emissions on the environment. The maintenance cost of solar-powered ships is relatively low. Because its power system is mainly composed of solar panels and batteries, the failure rate of these components is relatively low and the maintenance period is long. In addition, the discharge system of solar-powered ships is simple, and there is no need to clean and replace parts frequently, which further reduces the maintenance cost [10].

From the perspective of operating costs, solar-powered ships show significant advantages in terms of fuel costs and maintenance costs. With the rising global oil price and the increasingly strict requirements for environmental protection, the competitiveness of solar-powered ships in the international marine transportation market will become more and more prominent. However, it is worth noting that the initial investment cost of solar-powered ships is relatively high, and their sailing speed and voyage may be limited by weather and solar panel efficiency. Therefore, when choosing a solar-powered ship, it is necessary to comprehensively consider various factors to ensure its economy and feasibility.

3.2. Environmental Protection Performance Evaluation

Under the background of global advocacy of green, low-carbon and sustainable development, environmental performance has become an important indicator to measure the competitiveness of ships. As a clean energy-driven vehicle, solar-powered ships show significant advantages in reducing greenhouse gas emissions and marine pollution.

Traditional oil-fired ships will produce a lot of carbon dioxide and other greenhouse gases when burning fossil fuels, and the emission of these gases will aggravate the global warming trend. In contrast, solar-powered ships use solar energy as the power source, and hardly produce greenhouse gas emissions. Solar panels convert solar energy into electric energy through photoelectric effect without burning any fossil fuel, thus effectively reducing the carbon footprint. This low-carbon feature gives solar-powered ships a significant advantage in meeting the challenges of global climate change. In addition to greenhouse gas emissions, oil-fired ships may also pollute the marine environment due to fuel leakage, waste oil emissions and waste gas emissions. These pollutants pose a serious threat to marine life and ecosystem. However, solar-powered ships hardly have these problems. Because it doesn't depend on fuel, the solar ship avoids the risk of fuel leakage and waste oil discharge. At the same time, there are...
no harmful gases and particles in its emission system, which further protects the cleanliness of the marine environment.

With the increasing awareness of global environmental protection, enterprises and individuals are paying more and more attention to environmental responsibility. The environmental performance of solar-powered ships not only conforms to this trend, but also establishes a good environmental image for enterprises, thereby enhancing their market competitiveness. For those shippers and logistics companies that pay attention to sustainable development, choosing solar-powered ships as transportation tools can not only reduce operating costs, but also make positive contributions to environmental protection.

Solar-powered ships show excellent environmental protection performance in reducing greenhouse gas emissions and marine pollution. This advantage not only conforms to the global trend of environmental protection, but also brings tangible economic benefits and environmental reputation to shipping companies. With the continuous improvement of technology and the reduction of cost, solar-powered ships are expected to become one of the mainstream choices in the international marine transportation market in the future.

Environmental protection advantages: Solar-powered ships use solar energy as the power source, which significantly reduces greenhouse gas emissions and marine pollution, conforms to the global environmental protection trend, and meets the needs of shippers and logistics companies for green transportation.

Cost advantage: Although the initial investment of solar-powered ships may be high, in the long run, its operating cost is far lower than that of traditional fuel-powered ships. Solar-powered ships hardly need to consume fuel, thus greatly reducing fuel costs. In addition, due to the simple structure of its power system, the maintenance cost is relatively low.

Policy advantages: Governments all over the world are actively promoting the development of green shipping and giving policy support and subsidies to clean energy ships. As a representative of green shipping, solar-powered ships are expected to enjoy more preferential policies and support.

Innovative advantages: Solar-powered ships represent the innovative direction of shipping technology. With the continuous progress of technology and the reduction of cost, the performance of solar-powered ships will be further improved and it is expected to occupy a larger share in the market.

Although the share of solar-powered ships in the international maritime transport market is small at present, its unique advantages of environmental protection, cost, policy and innovation make it have great development potential. With the promotion of global environmental awareness and the increasing demand for green shipping, solar-powered ships are expected to occupy a more important position in the market and become an important development direction of the shipping industry in the future.

3.3. Analysis of Market Competitiveness

In the international maritime transport market, solar in the international maritime transport market, solar an emerging green shipping method, solar-powered ships, as an emerging green shipping method, are gradually demonstrating their unique competitiveness. The international maritime transport market is a highly competitive arena dominated by several large shipping companies, such as Maersk and Mediterranean Shipping. These companies typically possess vast fleets and well-established global transportation networks, offering efficient and reliable freight services. However, with the rising global awareness of environmental protection and the increasing demand for green shipping, traditional fuel-powered ships are facing growing environmental pressures.

As a representative of green shipping, solar-powered ships have attracted wide attention in the market for their unique environmental advantages and huge development potential, although their share in the whole international marine transportation market is small at present. More and more shippers and logistics companies begin to look to solar-powered ships to seek more environmentally friendly and economical modes of transportation. The market advantage analysis of solar-powered ships is shown in Figure 2.

![Figure 2. Analysis of market advantages of solar-powered ships](image)

Environmental protection advantages: Reduced GHG emissions and pollution
Cost advantage: Lower long-term operating costs
Policy advantage: Government support and incentives
Innovation advantage: Leading in shipping technology

4. Future Development Trend of Solar-powered Ships

4.1. Technological Innovation Direction

With the continuous progress of science and technology, solar-powered ships will usher in important development opportunities in technological innovation. In the future, solar ships will devote themselves to improving the photovoltaic conversion efficiency of solar panels. By developing new materials, improving the structure and manufacturing process of solar panels, solar-powered ships are expected to achieve higher energy output, thus extending the sailing distance and time. This will not only improve the practicability of solar-powered ships, but also further reduce operating costs and enhance their market competitiveness. The optimization of ship design is also an important direction of technological innovation of solar-powered ships in the future. Designers will devote themselves to developing lighter and more streamlined hulls to reduce navigation resistance and improve
With the increasing demand for solar-powered ships, the industry will benefit from the development of solar ship first. Solar ship is an efficient photovoltaic system, so the photovoltaic conversion efficiency and optimizing ship design are two key directions of technological innovation of solar-powered ships. With the continuous progress and application of these technologies, solar-powered ships are expected to become an important force in the shipping industry in the future, and promote the global shipping industry to develop in a greener and more sustainable direction.

4.2. Policy Support and Market Prospect

Governments are increasingly aware of the importance of clean energy ships to reduce environmental pollution and relieve energy pressure, so they have given significant policy support to clean energy ships such as solar energy ships. Many countries encourage shipping enterprises to adopt clean energy technology by providing financial subsidies, tax relief and other measures. For example, some European countries provide financial subsidies for enterprises to purchase and renovate clean energy ships. The government also subsidizes related research and development projects to promote the innovation and development of solar-powered ship technology. These financial support will help to accelerate the breakthrough of key technologies such as the improvement of photovoltaic conversion efficiency and the optimization of ship design. In order to promote the green transformation of the shipping industry, governments all over the world have formulated stricter environmental protection laws and regulations to limit the emissions of traditional fuel ships, thus indirectly promoting the development of clean energy ships such as solar-powered ships.

With the promotion of global environmental awareness and the government's vigorous promotion of clean energy, the potential demand for solar-powered ships in the international marine transportation market is increasing. Enterprises pay more and more attention to environmental protection image, and choosing solar-powered ships as transportation tools will not only help reduce carbon emissions, but also enhance the green image of enterprises, which is in line with the global trend of sustainable development. Although the initial investment of solar-powered ships may be high, the long-term operating cost is much lower than that of traditional fuel-powered ships. With the progress of technology and the reduction of cost, the economy of solar-powered ships will become more prominent. The demand of shippers and logistics companies for green and efficient modes of transportation is increasing. As an environmentally friendly and economical transportation option, solar-powered ships will be favored by more and more customers.

4.3. Opportunities for Coordinated Development of Industrial Chain

The rise of solar-powered ships not only represents the innovation of shipping technology, but also brings new opportunities for coordinated development for upstream and downstream enterprises in the industrial chain. The core of solar ship is efficient photovoltaic system, so the photovoltaic industry will benefit from the development of solar ship first. With the increasing demand for solar-powered ships, the market of key components such as photovoltaic modules, inverters and energy storage systems will also expand. Photovoltaic enterprises can work closely with ship manufacturers to customize efficient and stable photovoltaic products according to the special needs of ships and jointly promote the progress of solar ship technology. For the shipbuilding industry, the rise of solar-powered ships means new business growth points and transformation opportunities. Traditional ship manufacturers can actively deploy the R&D and production of solar-powered ships, make use of their experience in ship design and construction, and cooperate with photovoltaic enterprises to jointly build efficient and environmentally-friendly solar-powered ships. In addition, with the expansion of the solar ship market, the shipbuilding industry will also usher in more orders and business opportunities. The operation and maintenance of solar-powered ships also need professional service support. With the increase in the number of solar-powered ships, the demand for operation and maintenance services will continue to grow. Relevant enterprises can provide professional solar ship operation management and maintenance services to ensure the safe and efficient operation of the ship and further promote the maturity and development of the solar ship market.

The rise of solar-powered ships has brought new opportunities for coordinated development for photovoltaic industry, shipbuilding industry and operation and maintenance service industry. By strengthening the cooperation and innovation between upstream and downstream enterprises in the industrial chain, solar-powered ships are expected to achieve faster and more stable development and jointly promote the green transformation of the global shipping industry.

5. Conclusion

With the increasing awareness of global environmental protection and the growing demand for clean shipping, solar-powered ships, as a new environmentally-friendly and efficient mode of transportation, are gradually showing their unique competitiveness and great development potential. Using solar energy as power source, solar-powered ships not only significantly reduce greenhouse gas emissions and marine pollution, but also reduce operating costs for enterprises and improve transportation efficiency, which is in line with the global trend of green and low-carbon development. Solar-powered ships have remarkable competitiveness and great development potential in the international marine transportation market. With the continuous progress of technology and cost reduction, solar-powered ships are expected to become an important development direction of the future shipping industry, providing strong support for the green transformation of the global shipping industry.

References


technical issues of hybrid energy storage system for new energy ships. China Shipbuilding, 59(1), 11.


