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Abstract: Due to the relatively small size and complex internal structure of the pancreas, the segmentation is often inaccurate 
during image processing. A more effective automatic segmentation method is proposed to solve this problem. A multi-task deep 
neural network architecture based on V-Net architecture is proposed. By capturing the relationship between the prior positions 
of the pancreas, the target of the pancreas can be constrained at the regional level. In addition, this study uses dual task training 
methods to simultaneously perform segmentation tasks and regression tasks, and generate high-quality pseudo-label graphs to 
better utilize the valid information in a large number of unlabeled data. At the same time, this study also introduces the idea of 
consistency regularization, which uses the consistency regularization of prior information and the consistency regularization of 
noise disturbance and network disturbance to optimize the segmentation network between double decoders and double tasks, so 
as to further improve the segmentation effect and generalization ability of the model. Experiments show that compared with the 
benchmark method, the Dice coefficient of the method in this study is improved by 5.40% (for 10% labeled data) and 3.46% (for 
20% labeled data) respectively, which proves the efficiency of the method in processing unlabeled medical images described in 
this chapter. 

Keywords: Convolutional neural network; Medical image segmentation; Multivariate regularization; Semi-supervised 
learning. 

 

1. Introduction 
Pancreatic cancer is a highly lethal malignancy known as 

the "king of cancer," with a 5-year survival rate of less than 
10 percent, according to the American Cancer Society[1]. In 
the process of diagnosis and treatment of pancreatic cancer, 
accurate automatic pancreatic segmentation is very important 
for quantitative evaluation and computer-aided diagnosis, 
which helps clinicians to quickly detect and diagnose 
pancreatic cancer, reduce the workload of physicians, and 
improve diagnostic efficiency. Traditional image 
segmentation is a method based on pixel color, brightness and 
other features, by dividing the image into different areas to 
achieve image segmentation. Common algorithms used in 
this method include threshold segmentation [2,3], edge 
detection [4,5], region growth [6,7], etc. Traditional image 
segmentation is sensitive to noise, and is not effective for 
complex images or images with multiple objects. In the 
process of diagnosis and treatment of pancreatic cancer, 
accurate automatic pancreatic segmentation is very important 
for quantitative evaluation and computer-aided diagnosis, 
which helps clinicians to quickly detect and diagnose 
pancreatic cancer, reduce the workload of physicians, and 
improve diagnostic efficiency. Traditional image 
segmentation is a method based on pixel color, brightness and 
other features, by dividing the image into different areas to 
achieve image segmentation. The common algorithms of this 
method include threshold segmentation, edge detection, 
region growth and so on. Traditional image segmentation is 
sensitive to noise, and is not effective for complex images or 
images with multiple objects. 

In recent years, deep learning has become one of the hot 
research topics in medical image segmentation, which mainly 
uses Convolutional Neural Networks (CNNS) to extract and 

segment image features, and has high accuracy and 
robustness. In order to better improve the performance of 
pancreatic segmentation, a large number of researchers 
continue to explore and try methods, and have achieved 
certain results, but there are still some problems to be solved. 
Li et al [8] first used convolutional neural networks to extract 
features, and then used convolutional long short-term 
memory networks to obtain slice context information for 
pancreas segmentation. However, slicing context information 
cannot be shared across sequences and parallelism, and there 
is a problem of information loss in forward propagation. Zhou 
[9] et al. proposed a fixed-point model method, which first 
predicted the pancreatic region boundary, reduced the input 
resolution, and then implemented a fine segmentation strategy. 
Although this strategy can improve the segmentation 
accuracy in theory, its implementation process is relatively 
complicated, and due to the two predictions from coarse to 
fine, the segmentation results may be more volatile. 
Schlemper et al[10] proposed an attentional gate module 
embedded in Unet to eliminate the need for localization, but 
this mechanism failed to pay attention to the pancreas's 
clustering features on image space. By using two decoders 
with different depths in Unet, Bi Xiuli et al[11] solved the 
problem that a single decoder lost pancreatic location and 
detail information when decoding deeper encoding features. 
This method can improve the accuracy of pancreas 
segmentation, but can not fully capture the spatial structure 
and context of the pancreas.  However, due to the instability 
of the adversarial network, the training and test results will 
also fluctuate greatly. 

All of the above methods have their own characteristics, 
but also have their own limitations, mainly in the lack of a 
combination of the characteristics of the pancreas itself to 
think deeply about the segmentation network. Due to the 
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small proportion of pancreas in abdominal CT images and the 
irregular shape and boundary, the existing pancreas 
segmentation network can extract strong semantic 
information to identify pancreas and spleen through 
subsampling in the coding stage, which will lead to the loss 
of feature location and detail information of pancreas, and 
seriously affect the accuracy of boundary pixels in 
segmentation results. Therefore, for the problem of pancreas 
segmentation, this study proposes a more advanced end-to-
end deep learning technology and a multi-task deep neural 
network structure based on V-Net architecture. By capturing 
the relationship between the prior positions of the pancreas, 
the target of the pancreas can be constrained at the regional 
level. In addition, this study uses dual task training methods 
to simultaneously perform segmentation tasks and regression 
tasks, and generate high-quality pseudo-label graphs to better 
utilize the valid information in a large number of unlabeled 
data. At the same time, this study also introduces the idea of 
consistency regularization, which uses the consistency 
regularization of prior information and the consistency 
regularization of noise disturbance and network disturbance 
to optimize the segmentation network between double 
decoders and double tasks, so as to further improve the 
segmentation effect and generalization ability of the model. 

2. Data Sets and Preprocessing 

2.1. Sources and characteristics of NIH data 
sets 

In this study, a publicly available dataset provided by the 
National Institutes of Health was used. The dataset contained 
the results of 82 abdominal enhanced 3D CT scans of 80 
subjects, including 53 men and 27 women. The volume of CT 
image is 512×512×D, where D∈[181,466], indicating the 
number of slice samples along the long axis of the human 
body, and the thickness ranges from 0.5mm to 1.0mm. Each 
sample was manually labeled and examined and corrected by 
an experienced radiologist. This dataset is publicly available 
and is widely used to evaluate the performance of pancreatic 
CT segmentation frameworks. 

2.2. Data set preprocessing 
In order to better present the features of the pancreas, this 

study adjusted the window width value of the downloaded 
NIH 3D image data to 45 and window position value to 325, 
and processed the 3D image data according to the Z-axis 
(cross section), and carried out ROI clipping on the images of 
each slice, and the clipping size resolution was [240,240]. The 
sections that did not contain the pancreas were also removed. 
In order to enhance the generalization ability of the network, 
this study carried out data enhancement processing on the 
cropped pictures. The pictures of the training set and the 
verification set were randomly rotated from -25° to +25° and 
randomly flipped horizontally according to the threshold 
condition of 0.5. All images used for training and testing are 
single-channel grayscale images with a bit depth of 8. Finally, 
when the data set is loaded, the data is normalized. The final 
amount of data used for training and testing was 14,110 
images. 

 

 
Figure 1. Samples and labels for training and testing 

purposes 

3. Textual Method 

3.1. Model design 
PIMR-Net (Prior Information and Multivariate 

Regularization for Dual-Task Segmentation) is designed in 
this chapter based on prior information and multivariate 
regularization for dual-task segmentation The overall 
structure of Consistency Network (PIMR-Net) is shown in 
Figure 2. The V-Net[12,13] network structure consists of 
encoder and decoder. The deep feature map is fused with the 
shallow feature map by upsampling operation, so as to 
compensate for the feature loss caused by pooling operation 
in the encoder and accelerate the learning of the feature of 
target segmentation. This chapter uses two V-net network 
models, model 1 V-Net and model 2 VNet, which contain 
decoders A and B, respectively, which are independent of 
each other. In this paper, random noise perturbations δ and δ 
'are added to the output of the encoder and passed to the 
decoder A of model 1 and to the decoder B of model 2, 
respectively. The two decoders produce prediction results at 
the same time after each iteration. In the training process of 
the model, the ultimate goal is to improve the generalization 
and noise resistance of the model by reducing the difference 
between the results of the two parts.  

In the V-Net[12,13]structure, composed of encoders and 
decoders, the network fuses the deep and shallow feature 
maps through up-sampling operations to compensate for the 
feature information that may be lost due to pooling operations 
in the encoder, and speeds up the learning process of target 
segmentation features. In this study, two V-net models are 
constructed, namely model 1 V-Net and model 2 V-Net, each 
of which contains an independent decoder A and decoder B. 
In the encoder output of these two models, random noise 
perturbations δ and δ 'are added and then input into encoder 
A of model 1 and encoder B of model 2, respectively. During 
each iteration, the encoder output is then passed through the 
decoder to produce the final prediction result. During the 
training process, the goal is to improve the generalization 
performance and noise resistance of the model by reducing 
the difference in the prediction results of the two parts. 
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Figure 2. Overall structure of the model 

 
Since the feature distribution of medical image samples 

after preprocessing is relatively similar, this study considers 
adding geometric prior information to constrain the model to 
further improve its learning ability of segmented samples. In 
this study, a shape sensing regression layer was added at the 
end of each decoder, and in the training phase, each decoder 
performed two tasks simultaneously: the segmentation task 
and the regression task. Therefore, in each iteration, the 
network outputs A total of four parts: the segmentation graph 
SA output by model 1 decoder A, the pseudo-label PDLA, the 
segmentation graph SB output by model 2 decoder B, and the 
pseudo-label graph PDLB. The ability of the model to learn 
effective features of the segmented target can be enhanced by 
implementing the dual task consistency self-constraint and 
cross-constraint between decoders for each decoding part. 

3.2. Prior information pancreatic target 
localization 

This paper introduces a set of symbols to define semi-

supervised segmentation tasks. The data set contains two 

subsets L UD D D    and L UD D   . A set of 

symbols is introduced to define semi-supervised 
segmentation tasks. The data set contains two subsets and 

sums. Where 1{( , )} LN
L i i iD X Y   is the labeled data set and 

1{ } UN
U i iD X   is the unlabeled data set. X and Y represent 

images and labels, respectively. The goal of semi-supervised 
learning is to improve the performance of the training model 

using unlabeled data set UD  on labeled data set LD .  

Considering that there is a serious imbalance between 
foreground and background classes in pancreatic 
segmentation, it is necessary to extract the region of interest 
and remove the interference of irrelevant information, as 
shown in Figure 3. The specific steps are as follows: 

 

 
Figure 3. Orientation of prior information 
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1. The labeled images were preprocessed in this paper. First, 

the size of the cube containing the pancreatic region in each 
CT volume was calculated, and then the largest cube was 
selected so that it could contain all the pancreatic region in the 
data set. Then, the marked image set is cropped according to 
the largest cube, and the following data set 

1, V H WX Y
  
    is obtained, Where V



,H


and W


are the number, length and width of slices of marked data 
respectively. The model is then pre-trained using this data set. 

2. Due to individual differences, the axial plane span 
fluctuates greatly. By observing that the position of pancreas 
in 3D CT images has a certain range, the distribution 
information of labeled image data can be used to impose prior 
constraints on unlabeled images. Using the pre-trained model 

in 1) to predict the unlabeled data set UD , roughly locate the 

span of the axial plane of the pancreas, and then sample 

according to the cube sizes H


  and W


 . The processed 

unlabeled data is then extended bidirectionally to V


 and 
UX  is obtained. 
3. Considering that the pancreas has certain morphological 

characteristics in the human body, a related hypothesis is 
proposed: organs in the same position have similar 
characteristics in different patients. Therefore, the labeled and 
unlabeled images are divided into n block subregions of the 
same size, and constraints are imposed on the corresponding 
positions of the subregions. The size of the partition subregion 

is V


, 
H

n



, and 
W

n



, as shown in Figure 2 (n=4).  

3.3. Consistent regularization based on prior 
information 

Training architecture of dual task consistency fusion into 
multiple decoders. As the overall framework above is shown 
in Figure 2, in each decoder, there are two parallel execution 
tasks. These two tasks include generating pixel-level 
segmentation probability plots and geometric shape plots in 
traditional regression tasks represented by level set functions 
[14], respectively. In this section, the level set function is used 
as the expression method of 3D object contour by using prior 
knowledge. This function can map the space point X on the 
input 3D image to one dimensional space, and then generate 
pseudo-label graph PDL corresponding to the input image. 
Since the segmentation results can be represented by both 
pixel-level label maps and global geometric contours, the two 
prediction tasks need to be synchronized. In order to make 
more efficient use of unlabeled data, this study incorporates a 
dual-task consistency strategy into the semi-supervised 
learning framework and applies this strategy between two 
decoders. In this paper, we minimize the cross-consistency 
loss between two decoders and improve the segmentation 
performance of the model by using geometric prior 
knowledge. 

In order to ensure the consistency between decoder A of 
model 1 and decoder B of model 2 on geometric constraints, 

this study uses transformation function 1( )T    to convert 

pseudo-label graphs PDLA and PDLB generated by regression 
task, and obtains corresponding pixels-level segmentation 
probability graphs PDLsegA and PDLsegB. This process is 

accomplished by smoothing the Heaviside function. In the 
method of this study, the conversion layer T(·) used to convert 
the real label GT into the standard segmentation graph 
SGMGT is defined as follows: 
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 
        (1) 

 

In the formula discussed, x y   represents the 

Euclidean distance connecting two different voxel points x 
and y, and inf represents determining the smallest possible 
upper bound for that distance value. The variable ∂D 
represents the zero isometric line, that is, the state of no 
distance, which is used to describe the outer edge contour of 
the segmented target. Di refers to the area inside the split 
target, and Do refers to the area outside the split target. 
Therefore, in most cases, when the pixel is inside the 
segmentation target, the value of the conversion will become 
negative, and conversely, if it is outside, it will take a positive 
number. In view of the diversity of input image samples in 
perspective and segmentation target volume, the sigmoid 
activation function is further used to normalize T(·), so that 
the value of each input sample is limited to the interval of [-1, 
1] [13]. By applying the transformation formula T(·), the 
training sample GT with labeled data can be converted into 
the corresponding standard segmentation graph SGMGT. In 
addition, since the transform itself does not have 
differentiation, it is impossible to convert pseudo-label graphs 
PDLA and PDLB into segmentation probability graphs directly 
by using its inverse operation. For this reason, it is necessary 
to adopt a smooth approximation method to carry out the 
inverse transformation, the specific process is as follows: 

 

1 1
( ) ,

1 e k z
T z z SGM

  


         (2) 

 
In the formula, z represents the value of voxel x in the 

pseudo-label graph PDL. In order to achieve smooth 
approximate change effect, the transformation factor k should 
be selected as large as possible. Through the above 
transformation and reverse transformation formula, the 
consistency optimization operation can be carried out on the 
dual-task output in the model. 

3.4. Consistent regularization based on noise 
perturbation and network perturbation 

In the semi-supervised segmentation network framework 
mentioned above, we design a two-task prediction scheme 
based on two V-Net structures. In the scheme introduced in 
this chapter, the input for training the model is data-enhanced 

3D CT sample H W DX   . The sample set consists of N 
labeled samples and M unlabeled samples, and the number of 
labeled samples is far less than that of unlabeled samples, 
accounting for no more than 20% of all samples. In this paper, 
it is defined that the labeled data fields are 
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1{ , , }l N
n n n nD X Y Z    and 1{ }u N M

m m ND X 
   , and the 

unlabeled data fields are, and the shared encoder performs N 
random forward propagation together with decoder A of mode 
1 and decoder B of model 2 with added noise perturbation. As 

shown in Figure 4, when marked sample 
H W D

nX
   is 

input, {0,1}H W D
nY

    is the true segment label of the 

sample, and 
H W D

nZ
    is the standard segment graph 

𝑆G𝑀𝐺T converted from the real segment label (GT) nY  of 

the sample through the level set function T(·).  

During the training process, decoder A of model 1 and 
decoder B of model 2 backpropagate independently of each 
other by learning to add training samples with different 
perturbations. In addition, since the two decoders in the 
network model also introduce Dropout layers for perturbation 
at the model level, and the optimization process of the 
parameters of the neural network model is also random, both 
decoders can optimize the parameters of the shared encoder 
during backpropagation, thus improving the encoder's ability 
in feature extraction. And enhance the ability of the whole 
model to perturbation and generalization. In this way, the data 
level and model level perturbation are combined. 

 

 
Figure 4. Perturbation operation in model training 

 

4. Experiment and Discussion 

4.1. Experimental setup 
In this experiment, 13th Gen Intel(R) CoreTM i7-

13700KF×24 processor and NVIDIA GeForce RTX 4070 Ti 
single independent graphics card were used for model training. 

The deep learning framework used by all network models in 
this chapter is PyTorch. Using Python as the programming 
language. In this study, 3D V-Net was used as the backbone. 
The noise perturbation of the decoder in the model 𝛿 is set to 
[-0.1, 0.1]. The two V-Net backbones share the same 
parameters. For more environment configurations, see Table 
1. 
 

Table 1. Environment configuration description 
Name Hardware model and software version 

Operating system Linux 
CPU 13th Gen Intel(R) CoreTM i7-13700KF×24 
GPU NVIDIA GeForce RTX 4070 Ti 

Internal memory 16GB 
Video memory 11GB 

CUDA CUDA 12.2 
cuDNN cuDNN 8.9 

Deep learning framework PyTorch 1.12.0； 
Development language Python 3.7.16 

Compiler and environment configuration Pycharm 2023; Anaconda3 
Image processing library OpenCV 4.7.0; SimpleITK 2.0.2 

 

4.2. Evaluation index and loss function 
For image segmentation tasks, the following indicators can 

be selected as evaluation indicators, the following letters TP 
represents true cases, FP represents false positive cases, TN 

represents true negative cases, FN represents false negative 
cases. The above four terms can be used to calculate the four 
commonly used medical image segmentation evaluation 
indicators in pancreatic image analysis, which are Dice 
coefficient, Intersection Over Union, intersection over union. 
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IoU, Average surface distance (ASD), and Hausdorff 
Distance (HD). Its calculation method is shown in formula 
(3)~(6) : 

 
2*

 
2*

TP
Dice

TP FP FN


 
           (3) 

 

 
TP

IoU
TP FP FN


 

             (4) 

 

( ) ( )

1
 = ( ( , ( )) ( , ( )))

( ) ( ) A B
A B

s S A s S B
ASD d s S B d s S A

S A S B  
  


(5) 

 
Where S(A) represents the surface voxels in set A, and 

d(v,S(A)) represents the shortest distance from any voxel to 
S(A). 

                

( , ) max{ ( , ), ( , )}F R F Rf f f fH A B h A B h B A      (6) 

 

In the formula, , [0,1]F Rf f    The forward and 

backward scores, respectively, control forward distance and 
backward distance. 

4.3. Loss function 
In order to maintain consistent optimization between data 

models and tasks, this paper adopts a two-part loss function. 
One of them is the loss function Lseg and Lsdf used in 
supervised training on labeled samples. The other is the 
unsupervised training loss functions LconA and LconB 
applied to all training samples containing unlabeled data. 
Wherein, for the labeled training sample 

1{ , , }l N
n n n nD X Y Z  , the voxel (x, y)∈(X, Y) in the 3D 

sample is defined. Two pixel-level prediction probability 
graphs output by model 1 decoder A and model 2 decoder B 
during the training process generate segmentation graph SA 
and segmentation graph SB by sigmoid function. Dice loss 
function is used to calculate the loss between the 
segmentation graph and the real label, which is calculated as 
follows: 
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(7) 

 

In the formula, The variables ,Σ
j i j ix x y y    and 

,
Σ l

i ix y D
 

refer to the voxels in the 3D image sample and the labeled 

samples in the training dataset, respectively. 1 )·(Af   and 

1 )·(Bf   represent the segmentation graph SA and the 

segmentation graph SB generated by the decoder. At the same 
time, the decoder also generates pseudo-label graphs PDLA 

and PDLB, which will be compared with the standard label 
SGMGT obtained by the inverse transformation function 

( )·T  to calculate the loss, which is calculated as follows:  

 
   2 2

sdf 2 2
, ,

( , ) ( ) ( )
l l

i i i i

A i i B i i
x y D x y D

L x y f x T Ty yf x
 

        (8) 

 

In the formula， 2 )·(Af and 2 )·(Bf  Represents the PDLA 

and PDLB output of the decoder. Thus, the total loss function 
of the supervised part is defined as:      

 

      sup seg sdfL L L                  (9) 

 
Where 𝛽 represents a parameter weighing two loss terms. 

In order to efficiently utilize a large number of unlabeled 
sample data, this study adopts a strategy that combines the 
consistency of the task with the consistency of the model. This 
strategy uses a consistency loss function to mutually constrain 
the output of two independent decoders on different tasks, 
which is applicable to all training data. In the optimization 
process, this study aims at the probability graph SA generated 
by the segmentation task of decoder A in model 1 and the 
pseudo-label graph PDLB generated by the regression task of 
decoder B in model 2. As well as the consistency optimization 
between the probability graph SB generated by the 
segmentation task of decoder B in model 2 and the pseudo-
label graph PDLA generated by the regression task of decoder 
A in model 1, the specific calculation method is as follows: 

 

     1 2
conA 1 2( )

i
A i B i

x D
L x f x T f x


        (10) 

 
1 2

conB 1
x

2( ) ( ) ( ( ))
i

B i A i
D

L x f x T f x


         (11) 

 

  conA conBcrossL L L                   (12) 

 

In the formula, ·
ix D
  Represents all samples in the training 

set. It can be concluded from the above that the overall loss 
function of the semi-supervised image segmentation model 
designed in this chapter is: 

 

            sup crossL L L                 (13) 

 
In the formula，𝛼 is a hyperparameter that balances the 

weight between supervised and unsupervised training losses 
to stabilize the overall training process. In this chapter, the 
annealing strategy of the time-dependent Gaussian warm-up 
function [15] is adopted to gradually increase the value of 𝛼.  

4.4. Experimental result 
Methods in this chapter are divided as follows: (1) Baseline 

(BL): three-dimensional class represents semi-supervised 
medical image methods [16]; (2) PLPI: pancreatic target 
localization method based on prior information; (3) CRPI: 
consistency regularization of prior information. (3) CRNN: 
consistency regularization based on noise perturbation and 
network perturbation. In order to verify the effectiveness of 
the prior information pancreatic target positioning method 
PLPI, the prior information consistent regularization CRPI, 
the noise disturbance consistent regularization CRNN method 
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and the network disturbance consistent regularization CRNN 
method, as well as the superposition of these methods, this 
paper compares the same segmentation case and presents the 

segmentation results in a centralized manner. The 
segmentation results of the centralized method are shown in 
Figure 5. 
 

 
Figure 5. The results were divided by different methods 

 
Note: BL represents a three-dimensional class representing 

a semi-supervised medical image method [16]. BL+PLPI 
represents the fusion of prior information pancreatic target 
location and BL. BL+CRPI represents the fusion of the 
consistent regularization of prior information and BL. 
BL+CRNN represents the consistency regularization of noise 

perturbations and network perturbations and the fusion of BL. 
BL+PLPI+CRPI+CRNN represents the set of the above 
methods, namely PIMR-Net, the best model in this paper. 

The comparative experimental results of different methods 
are shown in Table 2. The experiments were carried out with 
6 labeled data and 12 labeled data respectively. 
 

Table 2. Ablation experiments using different labeling numbers and different methods 
Setting measures evaluation 

labelled unlabelled BL PLPI CRPI CRNN Dice (%) IoU(%) ASD(mm) 95HD(mm) 
6 56 √    71.81 57.36 5.60 20.27 
6 56 √ √   74.74 60.80 2.91 11.98 
6 56 √  √  72.81 58.27 5.34 16.41 
6 56 √   √ 75.97 62.74 3.09 13.07 
6 56 √ √ √ √ 77.21 63.51 2.94 12.10 

12 50 √    79.26 66.41 4.88 14.58 
12 50 √ √   81.23 68.86 2.10 9.17 
12 50 √  √  79.89 67.56 1.22 6.37 
12 50 √   √ 80.53 67.75 1.19 5.76 
12 50 √ √ √ √ 82.72 70.86 1.15 4.86 

 
As can be seen from Table 2, after the prior position is 

added to the method of three-dimensional class representation 
of semi-supervised medical images, each evaluation index 
can obtain greater benefits. In particular, the Dice index 

increased from 71.81% to 74.74% with 6 marked numbers, an 
increase of 2.93%, and from 79.26% to 81.23% with 12 
marked numbers, an increase of 1.97%. It is proved that the 
unlabeled data can be used more effectively for pancreatic 
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target localization based on prior information, and adding the 
decoder with prior information pancreatic target localization 
can make the model have better overall segmentation 
performance. Experimental results of BL and BL+CRPI in 
Table 2 show that Dice coefficient increases by 1.00% and 
IoU index increases by 0.91% on 6 labeled data sets. In 12 
datasets with annotated data, the Dice coefficient increased by 
0.63%, while the IoU also increased by 1.15%. This indicates 
that the consistent regularization method using prior 
information can improve the effect of pancreatic 
segmentation to a certain extent. The results of BL and 
BL+CRNN in Table 2 show that the ASD index is decreased 
by 2.51mm and the 95HD index is decreased by 7.20mm on 
the six labeled datasets. In 12 datasets with labeled data, the 
ASD index is decreased by 3.69mm, and the 95HD index is 
also decreased by 8.82mm, indicating the consistency 
regularization of noise disturbance and network disturbance, 
which makes the model more generalized. When the above 
three methods are used together in this paper, that is, the best 
model PIMR-Net proposed in this paper increases the Dice 
coefficient by 5,4% compared with BL on 6 labeled data sets, 
and the ASD index decreases by 2.66mm. On the 12 labeled 

datasets, Iou increased by 4.45% and 95HD decreased by 9.72 
mm relative to BL. Through the above ablation comparison 
experiments, it can be shown that no matter what method is 
effective for improving the segmentation of pancreas, 
especially in PIMR-Net proposed in this paper, the 
generalization performance of the model and the effect of the 
semi-supervised segmentation model of pancreas can be 
improved to a greater extent. 

The visualization of 3D segmentation results between the 
methods in this chapter and several advanced segmentation 
methods in recent years is shown in Figure 6. It can be 
visually seen from the figure that under the conditions of 6 
labeled samples (10% labeled data) and 12 labeled samples 
(20% labeled data), the segmentation effect of PIMR-Net 
proposed in this chapter is more overlapping with the real 
labels labeled by experts in the same test sample in the test set 
which is fuzzy and difficult to segment compared with other 
samples. A more complete pancreas shape and more details 
are predicted, especially at the boundary of the segmentation 
target, which further proves the validity of the dual-task semi-
supervised pancreas network based on prior information and 
multivariate regularization proposed in this chapter. 

 

 
Figure 6. 3D visualization of segmentation results by different segmentation methods 

 

5. Conclusion 
In this paper, we propose a multi-task deep neural network 

architecture based on V-Net architecture. By capturing the 
relationship between the prior positions of the pancreas, the 
target of the pancreas can be constrained at the regional level. 
In addition, this study uses dual task training methods to 
simultaneously perform segmentation tasks and regression 
tasks, and generate high-quality pseudo-label graphs to better 
utilize the valid information in a large number of unlabeled 
data. At the same time, this study also introduces the idea of 
consistency regularization, which uses the consistency 
regularization of prior information and the consistency 
regularization of noise disturbance and network disturbance 
to optimize the segmentation network between double 
decoders and double tasks, so as to further improve the 
segmentation effect and geeralization ability of the model. 
Experiments show that compared with the benchmark method, 
the Dice coefficient of the method in this study is improved 
by 5.40% (for 10% labeled data) and 3.46% (for 20% labeled 
data) respectively, which proves the efficiency of the method 

in processing unlabeled medical images described in this 
chapter. Compared with other algorithms, the algorithm 
proposed in this chapter performs better and can perform 
automatic segmentation of pancreatic targets in CT images. 
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