Application of Machine Learning in Loan Default Prediction
DOI:
https://doi.org/10.54097/75k4fe13Keywords:
Default Prediction Model, Random Forest, Genetic Algorithms.Abstract
Loan default prediction is critical for financial risk management, enabling institutions to make informed lending decisions and mitigate potential losses. This study aims to improve the accuracy of loan default prediction using advanced machine learning techniques. Our research objectives include developing a robust prediction model through comprehensive data analysis, feature engineering, and model tuning. Methodologically, we use iterative interpolators to handle missing values, KBinsDiscretizer for feature binning, and neural networks optimized using Bayesian methods and genetic algorithms. The results show that the optimized model can produce more accurate prediction results.
References
Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785-794. doi:10.1145/2939672.2939785.
Hamid, S. and Ahmed, A., 2016. Comparison of Models Using J48, Bayesian Networks, and Naive Bayes for Loan Default Prediction. Procedia Computer Science, 91, pp.257-264. doi:10.1016/j.procs.2016.07.068.
Byanjankar, A., Heikkilä, M. and Mezei, V., 2015. Predicting Loan Default in Peer-to-Peer Lending: An Application of Survival Analysis. Journal of Retailing and Consumer Services, 22, pp.190-195. doi:10.1016/j.jretconser.2014.08.005.
Swindle, M., Bhatt, U. and Patel, K., 2021. A Deep Learning Approach for Loan Default Prediction Using Imbalanced Dataset. Expert Systems with Applications, 162, p.113429. doi:10.1016/j.eswa.2021.113429.
Chang, R., Lin, L. and Chen, Y., 2020. A Federated Learning-Based Approach for Loan Defaults Prediction. Proceedings on Privacy Enhancing Technologies, 2020(4), pp.128-145. doi:10.2478/popets-2020-0065.
Chen, N., Liang, Y. and Ge, J., 2022. Using Multi-Label Classification for Default Risk Prediction. Procedia Computer Science, 202, pp.233-240. doi:10.1016/j.procs.2022.03.051.
Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785-794. doi:10.1145/2939672.2939785.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.