# Adomian decomposition method for solving fuzzy fractional Volterra-Fredholmintegro-differential equations

## DOI:

https://doi.org/10.54097/evxhvq18## Keywords:

Fuzzy fractional Volterra-Fredholm integral equations; fixed point theorem; Adomian decomposition method.## Abstract

This paper mainly studies the fuzzy nonlinear fractional Volterra-Fredholm integro-differential equations based on fuzzy Caputo derivative under the generalized Hukuhara difference. By usingSchauder fixed point theorem, the existence of solutions are proved. Because of the good convergence and convenient calculation of the Adomian decomposition method (ADM), we expand the nonlinear part of the equation into the Adomian polynomial of infinite series, and then construct the iterative sequence of the numerical solution of the equation. The effectiveness and applicability of ADM are verified by numerical examples.

## References

N. H. Abel. Solution de quelques problemes a láide díntegrales definites. Chris- tiania Grondahl, Norway, 1(1881), 16-18.

R. P. Agarwal, V. Lakshmikantham, J. J. Nieto. On the concept of solution for fractional differential equations with uncertainty. Nonlinear Anal, 72(2010), 59-62.

M. Rahaman, S. P. Monda, A. A. Shaikh, A. Ahmadian, N. Senu, S. Salahshour. Arbitrary-order economic production quantity model with and without deerioration:generalized point of view. Advances in Difference Equations, 2020(2020), 1-30.

S. S. L. Chang, L. A. Zadeh. On fuzzy mapping and control. IEEE Transactions on Systems, Man, and Cybernetics, 2(1972), 30-34.

L. A. Zadeh. The concept of linguistic variable and its applica- tion to approximate reasoning. Information Sciences, 8(1975), 199-249.

M. Mizumoto, K. Tanaka. The four operations of arithmetic on fuzzy numbers. Systems Comput Controls, 7(1976), 73-81.

D. Dubois, H. Prade. Towards fuzzy differential calculus, Part I: integration of fuzzy mappings, class of second-order. Fuzzy Sets and Systems, 8(1982), 1-17.

M. Puri, D. Ralescu. Differentials of fuzzy functions. Journal of Mathematical Analysis and Applications, 91(1983), 552-558.

B. Bede, S. G. Gal. Generalizations of the differentiability of fuzzy number valued functions with applications to fuzzy differential equations. Fuzzy Sets and Systems, 151(2005), 581-599.

L. Stefanini, B. Bede. Generalized Hukuhara differentiability of interval-valued functions and interval differential equations. Nonlinear Analysis, 71(2009), 1311-1328.

S. Alkan, V. Hatipoglu. Approximate solutions of Volterra-Fredholm integro- differential equations of fractional order. Tbilisi Mathematical Journal, 10(2017), 1-13.

A. A. Hamoud, A. D. Azeez, K. P. Ghadle. A study of some iterative methods for solving fuzzy Volterra-Fredholm integral equations. Indonesian Jour- nal of Electrical Engineering and Computer Science, 11(2018), 1228-1235.

A. A. Hamoud, K. P. Ghadle. The reliable modified of Laplace Adomian decomposition method to solve nonlinear interval Volterra-Fredholm integral equations. The Korean Journal of Mathematics, 25(2017), 323-334.

A. A. Hamoud, K. P. Ghadle. The combined modified Laplace with Adomian decomposition method for solving the nonlinear Volterra-Fredholm integro-differential equations. Journal of the Korean Society for Industrial and Applied Mathematics, 21(2017), 17-28.

X. Ma, C. Huang. Numerical solution of fractional integro-differential equations by a hybrid collocation method. Applied Mathematics and Computation, 219(2013), 6750-6760.

R. Mittal, R. Nigam. Solution of fractional integro-differential equations by Adomian decomposition method. International Journal of Advances in Applied Mathematics and Mechanics, 4(2008), 87-94.

S. Arshad, V. Lupulescu. On the fractional differential equations with uncertainty. Nonlinear Anal, 74(2011), 85-93.

S. Arshad, V. Luplescu. Fractional differential equation with fuzzy initial conditon. Electronic Journal of Differential Equations, 34(2011), 1-8.

T. Allahviranloo, A. Armand, Z. Gouyandeh, H. Ghadiri. Existence and uniqueness of solutions for fuzzy fractional Volterra-Fredholm integro-differential equations. Journal of Fuzzy Set Valued Analysis, 2013(2013), 1-9.

N. Ahmad, A. Ullah, A. Ullah, S. Ahmad, K. Shah, I. Ahmad. On analysis of the fuzzy fractional order Volterra-Fredholm integro-differential equation. Alexandria Engineering Journal, 60(2020), 1827-1838.

A. A. Hamoud, K. P. Ghadle. Modified Laplace decomposition method for fractional Volterra-Fredholm integro-differential equations. Journal of Mathe- matical Modeling, 6(2018), 91-104.

A. A. Hamoud, K. P. Ghadle, S. M. Atshan. The approximate solutions of fractional integro-differential equations by using modified Adomian decomposition method. Khayyam Journal of Mathematics, 5(2019), 21-39.

A. A. Hamoud, K. P. Ghadle. Homotopy analysis method for the first order fuzzy Volterra-Fredholm integro-differential equations. Indonesian Jour- nal of Electrical Engineering and Computer Science, 11(2018), 857-867.

M. S. Bani Issa, A. A. Hamoud, K. P. Ghadle. Numerical solutions of fuzzy integro-differential equations of the second kind. Journal of Mathematics and Computer Science, 23(2021), 67-74.

M. Baghmisheh, R. Ezzati. Numerical solution of nonlinear fuzzy Fred- holm integral equations of the second kind using hybrid of block-pulse functions and Taylor series. Advances in Difference Equations, 2015(2015), 1-15.

S. Salahshour, A. Ahmadian, N. Senu, D. Baleanu, P. Agarwal. On analytical solutions of the fractional differential equation with uncertinity: Application to the basset problem. Entropy, 17(2015), 855-902.

D. Dubois, H. Prade. Operations on fuzzy numbers. In- ternational Journal of Systems Science, 9(1978), 613-626.

S. S. Behzadi, T. Allahviranloo, S. Abbasbandy. Solving fuzzy second-order nonlinear Volterra-Fredholm integro-differential equations by using Picard method. Neural Computing and Applications, 21(2012), 337-346.

W. Al-Hayani. Solving fuzzy system of Volterra integro-differential equations by using Adomian decomposition method. European Journal of Pure and Applied Mathematics, 15(2022), 290-213.

S. Seikkala. On the fuzzy initial value problem. Fuzzy Sets and Systems, 24(1987), 319-330.

S. G. Gal. Approximation theory in fuzzy setting. Handbook of analyticcomputational methods in applied mathematics. Chapman and Hall/CRC Press, Boca Raton, 2019, 3-50.

W. Feng, D. Zhang. The local existence and uniqueness of solutions for fuzzy functional Volterra integral equations. 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery, 2012, 184-187.

S. Hajighasemi. Fuzzy Fredholm-Volterra integral equations and existance and uniqueness of solution of them. Australian Journal of Basice and Applied Sci- ence, 5(2011), 1-8.

[34] B. Bede, L. Stefanini. Generalized differentiability of fuzzy-valued functions. Fuzzy Sets and Systems, In press, 230(2013), 119-141.

T. Allahviranloo, S. Salahshour, S. Abbasbandy. Explicit solutions of fractional differential equations with uncertainty. Soft Comput, 16(2012), 297-302.

S. Salahshour, T. Allahviranloo S. Abbasbandy. Solving fuzzy frac- tional differential equations by fuzzy Laplace transforms. Communications in Nonlinear Science and Numerical Simulation, 17(2012), 1372-1381.

A. M. Wazwaz. The combined Laplace transform-Adomian decomposition method for handling nonlinear Volterra integro-differential equations. Applied Mathematics and Computation, 216(2010), 1304-1309.

K. Abbaoui, Y. Cherruault. Convergence of Adomian s method applied to nonlinear equations. Mathematical and Computer Modelling, 20(1994), 69-73.

G. Adomian. A review of the decomposition method in applied mathematics. Journal of Mathematical Analysis and Applications, 135(1988),501-544.

A. M. Wazwaz. A reliable modification of Adomian decomposition method. Applied Mathematics and Computation, 102(1999), 77-86.

M. O. Olayiwola, K. O. Kareem. Eﬀicient decomposition method for integrodifferential equations. Journal of Mathematics and Computer Science, 12(2022), 66-81.

## Downloads

## Published

## Issue

## Section

## License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

## How to Cite

*Mathematical Modeling and Algorithm Application*,

*2*(2), 36-42. https://doi.org/10.54097/evxhvq18