Research Progress of SREBP in Ocular Disease

Authors

  • Yuhao Wu
  • Wei Tan

DOI:

https://doi.org/10.54097/vhjtar47

Keywords:

Sterol Regulatory Element Binding Protein, Ocular Disease, Lipid Metabolism, Inflammation

Abstract

Sterol regulatory element-binding proteins (SREBP) is a class of transcription factor that regulate the metabolism of cholesterol, fatty acids and phospholipids and is widely expressed in body tissues. SREBP is known to play important roles in the physiological and pathological processes of metabolic diseases, cardiovascular diseases, tumors and other diseases. In recent years, the study of SREBP in ocular diseases has received extensive attention, and it has been shown that SREBP plays an important role in the development of diseases such as dry eye, diabetic retinopathy (DR), age-related macular degeneration (AMD), glaucoma, cataract, and retinoblastoma. SREBP affects the function of ocular tissues by regulating lipid metabolism, inflammation, oxidative stress, and apoptosis, and may be a novel therapeutic target for ocular diseases. This article summarizes the progress of SREBP in ocular diseases, focusing on its role in various ocular pathologies and its potential therapeutic value to provide new ideas for the prevention and treatment of related diseases.

Downloads

Download data is not yet available.

References

[1] Yi J, Zhu J, Wu J, Thompson CB, Jiang X. Oncogenic activation of PI3K-AKT-mTOR signaling suppresses ferroptosis via SREBP-mediated lipogenesis. Proc Natl Acad Sci U S A. 2020. 117(49): 31189-31197.

[2] Fang C, Pan J, Qu N, et al. The AMPK pathway in fatty liver disease. Front Physiol. 2022. 13: 970292.

[3] Stachowicz A, Czepiel K, Wiśniewska A, et al. Mitochondria-targeted hydrogen sulfide donor reduces fatty liver and obesity in mice fed a high fat diet by inhibiting de novo lipogenesis and inflammation via mTOR/SREBP-1 and NF-κB signaling pathways. Pharmacol Res. 2024. 209: 107428.

[4] Lee JH, Lee SH, Lee EH, et al. SCAP deficiency facilitates obesity and insulin resistance through shifting adipose tissue macrophage polarization. J Adv Res. 2023. 45: 1-13.

[5] Fan C, Ling-Hu A, Sun D, et al. Nobiletin Ameliorates Hepatic Lipid Deposition, Oxidative Stress, and Inflammation by Mechanisms That Involve the Nrf2/NF-κB Axis in Nonalcoholic Fatty Liver Disease. J Agric Food Chem. 2023. 71(50): 20105-20117.

[6] Pham DV, Park PH. Adiponectin triggers breast cancer cell death via fatty acid metabolic reprogramming. J Exp Clin Cancer Res. 2022. 41(1): 9.

[7] Zheng G, Su Y, Wei L, et al. SCAP contributes to embryonic angiogenesis by negatively regulating KISS-1 expression in mice. Cell Death Dis. 2023. 14(4): 249.

[8] Kim HY, Jang HJ, Muthamil S, et al. Novel insights into regulators and functional modulators of adipogenesis. Biomed Pharmacother. 2024. 177: 117073.

[9] Hendrix S, Zelcer N. A new SPRING in lipid metabolism. Curr Opin Lipidol. 2023. 34(5): 201-207.

[10] Kawamura S, Matsushita Y, Kurosaki S, et al. Inhibiting SCAP/SREBP exacerbates liver injury and carcinogenesis in murine nonalcoholic steatohepatitis. J Clin Invest. 2022. 132(11): e151895.

[11] Li N, Li X, Ding Y, et al. SREBP Regulation of Lipid Metabolism in Liver Disease, and Therapeutic Strategies. Biomedicines. 2023. 11(12): 3280.

[12] Su F, Koeberle A. Regulation and targeting of SREBP-1 in hepatocellular carcinoma. Cancer Metastasis Rev. 2024. 43(2): 673-708.

[13] Lee KC, Wu KL, Yen CK, Chen CN, Chang SF, Huang WS. 6-Shogaol Antagonizes the Adipocyte-Conditioned Medium-Initiated 5-Fluorouracil Resistance in Human Colorectal Cancer Cells through Controlling the SREBP-1 Level. Life (Basel). 2021. 11(10): 1067.

[14] Hwang HJ, Lee KH, Cho JY. ABCA9, an ER cholesterol transporter, inhibits breast cancer cell proliferation via SREBP-2 signaling. Cancer Sci. 2023. 114(4): 1451-1463.

[15] Wei F, Gu Y, He L, et al. HSD17B6 delays type 2 diabetes development via inhibiting SREBP activation. Metabolism. 2023. 145: 155631.

[16] Wang X, Chen Y, Meng H, Ruan J, Meng F. SREBP-1-mediated lipogenesis confers resistance to ferroptosis and improves endothelial injury. FASEB J. 2024. 38(13): e23806.

[17] Zhang Y, Li H, Cao Y, Zhang M, Wei S. Sirtuin 1 regulates lipid metabolism associated with optic nerve regeneration. Mol Med Rep. 2015. 12(5): 6962-8.

[18] Wang H, Wu Y, Bassetti JA, et al. A gain-of-function variant in SREBF1 causes generalized skin hyperpigmentation with congenital cataracts. Br J Dermatol. 2024. 191(5): 805-815.

[19] Jun I, Choi YJ, Kim BR, Seo KY, Kim TI. Activation of ADRB2/PKA Signaling Pathway Facilitates Lipid Synthesis in Meibocytes, and Beta-Blocker Glaucoma Drug Impedes PKA-Induced Lipid Synthesis by Inhibiting ADRB2. Int J Mol Sci. 2022. 23(16): 9478.

[20] McCann P, Abraham AG, Mukhopadhyay A, et al. Prevalence and Incidence of Dry Eye and Meibomian Gland Dysfunction in the United States: A Systematic Review and Meta-analysis. JAMA Ophthalmol. 2022. 140(12): 1181-1192.

[21] Qi X, Yang Y, Xiong D, Wu S, Cui G, Zhang Q. ER-1 deficiency induces inflammation and lipid deposition in meibomian gland and lacrimal gland. Biochem Biophys Res Commun. 2024. 696: 149526.

[22] Delcroix V, Mauduit O, Yang M, et al. Lacrimal Gland Epithelial Cells Shape Immune Responses through the Modulation of Inflammasomes and Lipid Metabolism. Int J Mol Sci. 2023. 24(5): 4309.

[23] Ding J, Liu Y, Sullivan DA. Effects of Insulin and High Glucose on Human Meibomian Gland Epithelial Cells. Invest Ophthalmol Vis Sci. 2015. 56(13): 7814-20.

[24] Vassiliou E, Farias-Pereira R. Impact of Lipid Metabolism on Macrophage Polarization: Implications for Inflammation and Tumor Immunity. Int J Mol Sci. 2023. 24(15): 12032.

[25] Cai Y, Zhang X, Yang C, Jiang Y, Chen Y. Melatonin alleviates high-fat-diet-induced dry eye by regulating macrophage polarization via IFT27 and lowering ERK/JNK phosphorylation. iScience. 2024. 27(7): 110367.

[26] Liu R, Li J, Xu Y, et al. Melatonin Attenuates LPS-Induced Proinflammatory Cytokine Response and Lipogenesis in Human Meibomian Gland Epithelial Cells via MAPK/NF-κB Pathway. Invest Ophthalmol Vis Sci. 2022. 63(5): 6.

[27] Jun I, Choi YJ, Kim BR, Lee HK, Seo KY, Kim TI. Activation of the mTOR pathway enhances PPARγ/SREBP-mediated lipid synthesis in human meibomian gland epithelial cells. Sci Rep. 2024. 14(1): 28118.

[28] Wang N, Yuan K, Yang S, Jin X. 13-cis Retinoic Acid-Mediated Modulation of Human Meibomian Gland Epithelial Cells Development: Implications for In Vitro Modeling of Meibomian Gland Dysfunction. J Ocul Pharmacol Ther. 2024. 40(10): 659-667.

[29] Ma S, Murakami K, Tanaka K, et al. Fatostatin ameliorates inflammation without affecting cell viability. FEBS Open Bio. 2022. 12(3): 594-604.

[30] Magliano DJ, Boyko EJ, IDF Diabetes Atlas 10th edition scientific committee, IDF DIABETES ATLAS. 2021. Brussels.

[31] Shen J, San W, Zheng Y, et al. Different types of cell death in diabetic endothelial dysfunction. Biomed Pharmacother. 2023. 168: 115802.

[32] Tang L, Xu GT, Zhang JF. Inflammation in diabetic retinopathy: possible roles in pathogenesis and potential implications for therapy. Neural Regen Res. 2023. 18(5): 976-982.

[33] Kang Q, Yang C. Oxidative stress and diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications. Redox Biol. 2020. 37: 101799.

[34] Gu C, She X, Zhou C, et al. Dihydroartemisinin ameliorates retinal vascular dysfunction in diabetes mellitus via the FASN/Kmal-mTOR/SREBP1 feedback loop. Pharmacol Res. 2021. 174: 105871.

[35] Zhang CL, Wang HL, Li PC, et al. Mfsd2a overexpression alleviates vascular dysfunction in diabetic retinopathy. Pharmacol Res. 2021. 171: 105755.

[36] Kim YS, Kim M, Choi MY, et al. Aralia elata (Miq) Seem Extract Decreases O-GlcNAc Transferase Expression and Retinal Cell Death in Diabetic Mice. J Med Food. 2017. 20(10): 989-1001.

[37] Tian Siwen, Liu Qiuping, Ma Jixian, Yang Jiajie, Li Jingming. Research Progress on the Correlation between Circadian Rhythm and Biological Clock Genes and the Pathogenesis of Diabetic Retinopathy International Journal of Ophthalmology. 2023. 23(08): 1290-1294.

[38] Chen M, Lin Y, Dang Y, et al. Reprogramming of rhythmic liver metabolism by intestinal clock. J Hepatol. 2023. 79(3): 741-757.

[39] Liu M, Zhang Z, Chen Y, Feng T, Zhou Q, Tian X. Circadian clock and lipid metabolism disorders: a potential therapeutic strategy for cancer. Front Endocrinol (Lausanne). 2023. 14: 1292011.

[40] Wang Q, Tikhonenko M, Bozack SN, et al. Changes in the daily rhythm of lipid metabolism in the diabetic retina. PLoS One. 2014. 9(4): e95028.

[41] Singh S, Wright RE 3rd, Giri S, Arumugaswami V, Kumar A. Targeting ABCG1 and SREBP-2 mediated cholesterol homeostasis ameliorates Zika virus-induced ocular pathology. iScience. 2024. 27(3): 109088.

[42] Ang MJ, Afshari NA. Cataract and systemic disease: A review. Clin Exp Ophthalmol. 2021. 49(2): 118-127.

[43] Reyes LP, Reyes TC, Dueñas Z, Duran D, Perdomo S, Avila MY. Expression of oxysterols in human lenses: Implications of the sterol pathway in age-related cataracts. J Steroid Biochem Mol Biol. 2023. 225: 106200.

[44] Ma P, Huang J, Chen B, et al. Lanosterol Synthase Prevents EMT During Lens Epithelial Fibrosis Via Regulating SREBP1. Invest Ophthalmol Vis Sci. 2023. 64(15): 12.

[45] Su Y, Sun D, Cao C, Wang Y. Lanosterol regulates abnormal amyloid accumulation in LECs through the mediation of cholesterol pathway metabolism. Biochem Biophys Rep. 2024. 38: 101679.

[46] Shin S, Zhou H, He C, et al. Qki activates Srebp2-mediated cholesterol biosynthesis for maintenance of eye lens transparency. Nat Commun. 2021. 12(1): 3005.

[47] Gabrielle PH. Lipid metabolism and retinal diseases. Acta Ophthalmol. 2022. 100 Suppl 269: 3-43.

[48] Zheng W, Reem RE, Omarova S, et al. Spatial distribution of the pathways of cholesterol homeostasis in human retina. PLoS One. 2012. 7(5): e37926.

[49] Lymperopoulou C, Kandarakis SA, Tzanaki I, Mylona I, Xanthos T, Agouridis AP. The Effect of Statins on Ocular Disorders: A Systematic Review of Randomized Controlled Trials. Pharmaceuticals (Basel). 2023. 16(5): 711.

[50] Cao X, Guo Y, Wang Y, et al. Effects of high-fat diet and Apoe deficiency on retinal structure and function in mice. Sci Rep. 2020. 10(1): 18601.

[51] Wang T, Soundararajan A, Rabinowitz J, Jaiswal A, Osborne T, Pattabiraman PP. Identification of the novel role of sterol regulatory element binding proteins (SREBPs) in mechanotransduction and intraocular pressure regulation. FASEB J. 2023. 37(11): e23248.

[52] Barbalho SM, de Alvares Goulart R, Minniti G, et al. Unraveling the rationale and conducting a comprehensive assessment of KD025 (Belumosudil) as a candidate drug for inhibiting adipogenic differentiation-a systematic review. Naunyn Schmiedebergs Arch Pharmacol. 2024. 397(5): 2681-2699.

[53] Kim E, Kim JY, Choi SH, Park HY, Ko J, Yoon JS. Therapeutic role of physalin A in the pathogenesis of Graves' orbitopathy. Immunopharmacol Immunotoxicol. 2024. 46(6): 912-923.

[54] Kim BR, Kim J, Lee JE, Lee EJ, Yoon JS. Therapeutic Effect of Guggulsterone in Primary Cultured Orbital Fibroblasts Obtained From Patients with Graves' Orbitopathy. Invest Ophthalmol Vis Sci. 2020. 61(3): 39.

[55] Park M, Kim JY, Kang JM, et al. PRL-1 overexpressed placenta-derived mesenchymal stem cells suppress adipogenesis in Graves' ophthalmopathy through SREBP2/ HMGCR pathway. Stem Cell Res Ther. 2021. 12(1): 304.

[56] Liu W, Ma C, Li HY, Yuan SS, Li KJ. Tea Polyphenols Reduce Inflammation of Orbital Fibroblasts in Graves' Ophthalmopathy via the NF-κB/NLRP3 Pathway. Curr Med Sci. 2023. 43(1): 123-129.

[57] Zhang J, Yuan Y, Gao X, et al. Scopoletin ameliorates hyperlipidemia and hepatic steatosis via AMPK, Nrf2/HO-1 and NF-κB signaling pathways. Biochem Pharmacol. 2025. 231: 116639.

Downloads

Published

30-06-2025

Issue

Section

Articles

How to Cite

Wu, Y., & Tan, W. (2025). Research Progress of SREBP in Ocular Disease. International Journal of Biology and Life Sciences, 10(3), 110-114. https://doi.org/10.54097/vhjtar47