Low-Dimensional Nanostructures for Silicon-Based Anode Materials in Lithium-Ion Batteries
DOI:
https://doi.org/10.54097/hset.v17i.2618Keywords:
Silicon anode, Lithium-Ion battery, Structure design, Mechanical analysis.Abstract
Electricity is becoming more important as an alternative energy replacing fossil fuels, as it can be obtained from solar, tide, and wind while being mostly harmless to the environment. The lithium-ion battery (LIB) has high potential in this regard. The silicon-based anode of LIB is a strong performer among different designs of LIBs and entered into service due to high specific energy and low operation potential. However, volume expansion during charging is a pressing problem. Low dimensional nanomaterials possess high specific surface area and special micro-mechanical properties, which can mitigate this problem effectively. This article focuses on cutting-edge nanoscale research from three-dimensionality angles, including 0D, 1D and 2D. For 0D, the core-shell structure is discussed, and modified structures based on the core-shell structure are introduced with a brief discussion on the preparation and structural features. For 2D anodes, silicon-based thin-film materials offer better stability and higher specific capacity. The preparation method of magnetron sputtering is discussed, and p-type doped SiOx/Si/SiOx sandwich LIB anodes are also introduced.
Downloads
References
K. Maiti, I. Sarkhel, et al. [J]. Power Engineer Journal, 2020, 22(1): 27-31.
A.K. Chan, R. Tatara, et al. [J]. Journal of The Electrochemical Society, 2019, 166(10): A1867. DOI: 10.1149/2.0581910jes
W.J. Zhang. [J]. Journal of Power Sources, 2011, 196(1): 13-24. DOI: https://doi.org/10.1016/j.jpowsour.2010.07.020
C.K. Chan, H. Peng, et al. [J]. Nature nanotechnology, 2008, 3(1): 31-35. DOI: https://doi.org/10.1038/nnano.2007.411
H. Wu, G. Chan, et al. [J]. Nature nanotechnology, 2012, 7(5): 310-315. DOI: https://doi.org/10.1038/nnano.2012.35
P.G. Bruce, B. Scrosati. [J]. Angewandte Chemie International Edition, 2008, 47(16): 2930-2946. DOI: https://doi.org/10.1002/anie.200702505
J.S. Bridel, T. Azais. [J]. Chemistry of Materials, 2010, 22(3): 1229-1241. DOI: https://doi.org/10.1021/cm902688w
Y. Yao, M.T. McDowell, et al. [J]. Nano letters, 2011, 11(7): 2949-2954. DOI: https://doi.org/10.1021/nl201470j
T.H. Hwang, Y.M. Lee, et al. [J]. Nano letters, 2012, 12(2): 802-807. DOI: https://doi.org/10.1021/nl203817r
Y. Oumellal, N. Delpuech, et al. [J]. Journal of Materials Chemistry, 2011, 21(17): 6201-6208. DOI: https://doi.org/10.1039/C1JM10213C
Y.S. Jung, K.T. Lee. [J]. Electrochimica acta, 2007, 52(24): 7061-7067. DOI: https://doi.org/10.1016/j.electacta.2007.05.031
Y. Qi, G. Wang, et al. [J]. Chemical Engineering Journal, 2020, 397: 125380. DOI: https://doi.org/10.1016/j.cej.2020.125380
N. Liu, H. Wu, et al. [J]. Nano letters, 2012, 12(6): 3315-3321. DOI: https://doi.org/10.1021/nl3014814
H. Tao, L.Z. Fan, et al. [J]. Nanoscale, 2014, 6(6): 3138-3142. DOI: https://doi.org/10.1039/C3NR03090C
A. Karmakar, P. Samanta, et al. [J]. Accounts of Chemical Research, 2017, 50(10): 2457-2469. DOI: https://doi.org/10.1021/acs.accounts.7b00151
N. Liu, J. Liu, et al. [J]. Energy Storage Materials, 2019, 18: 165-173. DOI: https://doi.org/10.1016/j.ensm.2018.09.019
Y. He, X. Yu, et al. [J]. Advanced materials, 2011, 23(42): 4938-4941. DOI: https://doi.org/10.1002/adma.201102568
E.M. Lotfabad, P. Kalisvaart, et al. [J]. Journal of Materials Chemistry A, 2014, 2(8): 2504-2516. DOI: https://doi.org/10.1039/C3TA14302C
L. Fu, A. Xu, et al. [J]. Electrochimica Acta, 2021, 387: 138461. DOI: https://doi.org/10.1016/j.electacta.2021.138461
J. David, F. James, et al. Department of Chemistry, University of North Carolina at Chapel Hill, USA; Material Matters, 2017, 12.1
H. Han, Z. Huang. [J]. Nano Today, 2014, 9(3): 271-304. DOI: https://doi.org/10.1016/j.nantod.2014.04.013
W.O. Filtvedt, A. Holt, et al. [J]. Solar energy materials and solar cells, 2012, 107: 188-200. DOI: https://doi.org/10.1016/j.solmat.2012.08.014
W. Wang, Z. Liu, et al. [P] America: 11289701, March 29, 2022.
M. Sadeghipari, A. Mashayekhi, et al. [J]. Nanotechnology, 2018, 29(5): 055403. DOI: https://doi.org/10.1088/1361-6528/aaa0e7
H. Song, S. Wang, et al. [J]. Journal of Materials Chemistry A, 2018, 6(17): 7877-7886. DOI: https://doi.org/10.1039/C8TA01694A
BD. Polat, O. Keles. [J]. Electrochimica Acta, 2015, 170: 63-71. DOI: https://doi.org/10.1016/j.electacta.2015.04.131
W. Wang, M. Tian, et al. [J]. Nano Energy, 2013, 2(5): 943-950. DOI: https://doi.org/10.1016/j.nanoen.2013.03.015
Wang B, Ryu J, et al. [J]. ACS nano, 2019, 13(2): 2307-2315. DOI: https://doi.org/10.1021/acsnano.8b09034
J. Deng, H. Ji, et al. [J]. Angewandte Chemie, 2013, 125(8): 2382-2386. DOI: https://doi.org/10.1002/anie.201208357
Q. Wu, B. Shi, et al. [J]. ACS applied materials & interfaces, 2018, 10(4): 3487-3494. DOI: https://doi.org/10.1021/acsami.7b13980
Q. Luo. [D]. Anqing Normal University, 2020. DOI: 10.27761/d.cnki.gaqsf.2020.000040.
F. Dou, Y. Weng, et al. [J]. Chemical Engineering Journal, 2020, 387: 124106. DOI: https://doi.org/10.1016/j.cej.2020.124106
Q. Chen, C. Zhang, et al. [J]. Journal of Power Sources, 2021, 481: 228833. DOI: https://doi.org/10.1016/j.jpowsour.2020.228833
J. Wang, S. Li, et al. [J]. RSC advances, 2018, 8(12): 6660-6666. DOI: 10.1039/C7RA12027C
J. Im, J.D. Kwon, et al. [J]. Small Methods, 2022, 6(3): 2101052. DOI: https://doi.org/10.1002/smtd.202101052
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.