Emerging Insights into the Principles and Advantages of Single-Cell and Spatial Transcriptomics

Authors

  • Boyu Zhu

DOI:

https://doi.org/10.54097/gf62sx56

Keywords:

Single-cell transcriptome sequencing; High-throughput analysis; Spatial transcriptome sequencing; Spatial location information; Cell transcriptome.

Abstract

Single-cell transcriptomics is a high-throughput technology capable of analyzing gene expression at the individual cell level. Spatial transcriptomics, on the other hand, is a technique that simultaneously captures both gene expression profiles and the spatial location information of cells. While single-cell transcriptomics enables sequencing of the transcriptome at a single-cell resolution, spatial transcriptomics provides the added dimension of spatial context alongside gene expression data. These two approaches—single-cell transcriptomics and spatial transcriptomics—are complementary, and their integration can facilitate a more comprehensive and in-depth investigation of biological questions.

Downloads

Download data is not yet available.

References

[1] MACOSKO E Z, BASU A, SATIJA R, et al. Highly Parallel Genome-Wide Expression Profiling of Individual Cells Using Nanoliter Droplets[J]. Cell, 2015, 161(5): 1202–1214. DOI: 10.1016/j.cell.2015.05.002.

[2] TANG F, BARBACIORU C, WANG Y, et al. mRNA-Seq Whole-Transcriptome Analysis of a Single Cell[J]. Nature Methods, 2009, 6(5): 377–382. DOI: 10.1038/nmeth.1315.

[3] STÅHL P L, SALMÉN F, VICKOVIC S, et al. Visualization and Analysis of Gene Expression in Tissue Sections by Spatial Transcriptomics[J]. Science, 2016, 353(6294): 78–82. DOI: 10.1126/science.aaf2403.

[4] QIAN X, YU W, CHEN H, et al. Probabilistic Cell Typing Enables Fine Mapping of Closely Related Cell Types In Situ[J]. Nature Methods, 2020, 17(1): 101–106. DOI: 10.1038/s41592-019-0699-4.

[5] BERGEN V, LANGE M, PEIDLI S, et al. Generalizing RNA Velocity to Transient Cell States through Dynamical Modeling[J]. Nature Biotechnology, 2020, 38(12): 1408–1414. DOI: 10.1038/s41587-020-0591-3.

[6] KEREN L, BOSSE M, MARQUEZ D, et al. A Structured Tumor-Immune Microenvironment in Triple Negative Breast Cancer Revealed by Multiplexed Ion Beam Imaging[J]. Cell, 2018, 174(6): 1373–1387. DOI: 10.1016/j.cell.2018.08.039.

[7] MONCADA R, BARKLEY D, WAGNER F, et al. Integrating Microarray-Based Spatial Transcriptomics and Single-Cell RNA-Seq Reveals Tissue Architecture in Pancreatic Ductal Adenocarcinomas[J]. Nature Biotechnology, 2020, 38(3): 333–342. DOI: 10.1038/s41587-019-0392-8.

[8] KLEIN A M, MAZUTIS L, AKARTUNA I, et al. Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells[J]. Cell, 2015, 161(5): 1187–1201. DOI: 10.1016/j.cell.2015.04.044.

[9] SHENG K, CAO W, NIU Y, et al. Effective detection of variation in single-cell transcriptomes using MATQ-seq[J]. Nature Methods, 2017, 14(3): 267–270. DOI: 10.1038/nmeth.4145.

[10] GIERAHN T M, WADSWORTH M H, HUGHES T K, et al. Seq-Well: portable, low-cost RNA sequencing of single cells at high throughput[J]. Nature Methods, 2017, 14(4): 395–398. DOI: 10.1038/nmeth.4179.

[11] WU A R, NEFF N F, KALISKY T, et al. Quantitative assessment of single-cell RNA-sequencing methods[J]. Nature Methods, 2014, 11(1): 41–46. DOI: 10.1038/nmeth.2694

[12] FLUIDIGM CORPORATION. Using the C1 system to generate single-cell cDNA libraries for mRNA sequencing[EB/OL]. 2014.

[13] ISLAM S, KJÄLLQUIST U, MOLINER A, et al. Highly multiplexed and strand-specific single-cell RNA 5' end sequencing[J]. Nature Protocols, 2012, 7(5): 813–828. DOI: 10.1038/nprot.2012.022.

[14] YAMAWAKI T M, LIU C C, ITO T, et al. Systematic comparison of high-throughput single-cell RNA-seq methods for immune cell profiling[J]. BMC Genomics, 2021, 22(1): 66. DOI: 10.1186/s12864-020-07358-4.

[15] ZHANG X, LI T, LIU F, et al. Comparative Analysis of Droplet-Based Ultra-High-Throughput Single-Cell RNA-Seq Systems[J]. Molecular Cell, 2019, 73(1): 130–142.e5. DOI: 10.1016/j.molcel.2018.10.020.

[16] GALL J G, PARDUE M L. Formation and Detection of RNA-DNA Hybrid Molecules in Cytological Preparations[J]. Proceedings of the National Academy of Sciences, 1969, 63(2): 378–383. DOI: 10.1073/pnas.63.2.378.

[17] Ke R, Mignardi M, Pacureanu A, et al. In Situ Sequencing for RNA Analysis in Preserved Tissue and Cells[J]. Nature Methods, 2013, 10(9): 857–860. DOI: 10.1038/nmeth.2563.

[18] KAMENEV P, ARTEMOV A V, KASTRITI M E, et al. Single-cell transcriptomics of human embryos identifies multiple sympathoblast lineages with potential implications for neuroblastoma origin[J]. Nature Genetics, 2021, 53(5): 694–706. DOI: 10.1038/s41588-021-00818-x.

[19] TUNG P Y, BLISCHAK J D, HSIAO C J, et al. Batch effects and the effective design of single-cell gene expression studies[J]. Scientific Reports, 2017, 7(1): 39921. DOI: 10.1038/srep39921.

[20] Achim K, Pettit J-B, Saraiva L R, et al. High-throughput spatial mapping of single-cell RNA-seq data to tissue of origin[J]. Nature Biotechnology, 2015, 33(5): 503–509. DOI: 10.1038/nbt.320

Downloads

Published

20-06-2025

Issue

Section

Articles

How to Cite

Zhu, B. (2025). Emerging Insights into the Principles and Advantages of Single-Cell and Spatial Transcriptomics. Academic Journal of Science and Technology, 15(3), 50-54. https://doi.org/10.54097/gf62sx56