An Adaptive Multitasking Evolutionary Computation Offloading Algorithm for Mobile Edge Computing

Authors

  • Yingjie Hou
  • Zhangang Wang
  • Xu Liu

DOI:

https://doi.org/10.54097/fcis.v6i1.06

Keywords:

Multitasking Optimization, Multi-objective Optimization, Edge Computing, Resource Allocation

Abstract

 In the mobile edge computing scenario, intelligent terminal devices can reduce the waiting delay by offloading the computing task to a server. The offloading scheme’s optimization has been proven an NP-hard problem. The heuristic algorithms, including evolutionary algorithms, are widely used to search for the optimal scheme. User experience is mainly limited by energy consumption and time delay. Most existing research results combine it linearly into a single objective or focus on the optimal solution in a specific area. Based on this, this paper proposes an adaptive multitasking evolutionary optimization algorithm, which considers multiple independent areas to be optimized. It abstracts the task offloading system model in each area as a multi-objective programming problem, aiming at minimizing the average energy consumption and delay of intelligent devices. By learning the user distribution and the similarity of tasks to be processed in different areas dynamically to adjust the degree of population communication, the convergence has been sped up. The performance of the proposed algorithm is verified by a set of instances.

Downloads

Download data is not yet available.

References

J. Liu, Y. Mao, J. Zhang, K. B. Letaief, Delay-optimal computation task scheduling for mobile-edge computing systems, IEEE International Symposium on Information Theory (ISIT) (2016) 1451–1455doi:10.1109/isit. 2016.7541 539.

Y. Mao, J. Zhang, K. B. Letaief, Dynamic computation offloading for mobile-edge computing with energy harvesting devices, IEEE Journal 480 on Selected Areas in Communications 34(12) (2016) 3590––3605. doi: 10.1109/ jsac. 2016.2611964.

S. Ulukus, A. Yener, E. Erkip, O. Simeone, M. Zorzi, P. Grover, K. Huang, Energy harvesting wireless communications: A review of recent advances, IEEE Journal on Selected Areas in Communications 33(3) (2015) 360––381. 485 doi:10.1109 /jsac.2015.2391531.

C. You, K. Huang, Multiuser resource allocation for mobile-edge computation offloading, IEEE Global Communications Conference (GLOBECOM) (2016) 1–6doi:10.1109/glocom. 2016.7842016..

P. Zhao, H. Tian, C. Qin, G. Nie, Energy-saving offloading by jointly allocating radio and computational resources for mobile edge computing, IEEE Access 5 (2017) 11255––11268. doi:10.1109/access.2017.2710056.J. Wang, “Fundamentals of erbium-doped fiber amplifiers arrays (Periodical style—Submitted for publication),” IEEE J. Quantum Electron., submitted for publication.

X. Cao, F. Wang, J. Xu, R. Zhang, S. Cui, Joint computation and communication cooperation for mobile edge computing, 16th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt) (2018) 1–6doi:10.23919/wiopt.2018.8362865.

X. Lyu, H. Tian, L. Jiang, A. V. S. Maharjan, S. Gjessing, Y. Zhang, Selective offloading in mobile edge computing for the green internet of things, IEEE Network 32(1) (2018) 54–60. doi:10.1109/mnet.2018.1700101.

X. Chen, L. Jiao, W. Li, X. Fu, Efficient multi-user computation offloading for mobile-edge cloud computing, IEEE/ACM Transactions on Networking 24(5) (2016) 2795––2808. doi:10.1109/tnet.2015.2487344.

T. Q. Dinh, J. Tang, Q. D. La, T. Q. Quek, Offloading in mobile edge computing: task allocation and computational frequency scaling, IEEE Transaction on Communications 65(8) (2017) 3571–3584. doi:10.1109/tcomm.2017.2699660.

M. Chen, Y. Hao, Task offloading for mobile edge computing in software defined ultra-dense network, IEEE Journal on Selected Areas in Communications 36(3) (2018) 587–597. doi:10.1109/jsac.2018.281536.

Z. Ning, P. Dong, X. Kong, F. Xia, A cooperative partial computation offloading scheme for mobile edge computing enabled internet of things, IEEE Internet of Things Journal 6(3) (2018) 4804–4814. doi:10.1109/jiot. 2018.2868616..

Y. Li, F. Qi, Z. Wang, X. Yu, S. Shao, Distributed edge computing offloading algorithm based on deep reinforcement learning, IEEE Access 8 (2020) 85204–85215. doi:10. 1109/ access.2020.2991773..

L. Lei, H. Xu, X. Xiong, K. Zheng, W. Xiang, Joint computation offloading and multi-user scheduling using approximate dynamic programming in nbiot edge computing system, IEEE Internet of Things Journal 6(3) (2019) 5345–5362. doi:10.1109/jiot.2019.2900550.

L. Rui, Y. Yang, X. Qiu, Computation offloading in a mobile edge communication network: a joint transmission delay and energy consumption dynamic awareness mechanism, IEEE Internet of Things Journal 6(6) (2019) 10546–10559. doi:10. 1109/ jiot.2019.2939874.

F. Sufyan, A. Banerjee, Computation offloading for distributed mobile edge computing network: A multiobjective approach, IEEE Access 8 (2020) 149915–149930. doi:10.1109/ access. 2020. 3016046.

L. Liu, Z. Chang, X. Guo, T. Ristaniemi, Multi-objective optimization for computation offloading in mobile-edge computing, IEEE Symposium on Computers and Communications (ISCC) (2017) 832–837doi:10.1109/ iscc. 2017. 8024630..

Z. Ning, P. Dong, X. Wang, Deep reinforcement learning for vehicular edge computing: an intelligent offloading system, ACM Transactions on Intelligent Systems and Technology (TIST) 10(6) (2019) 1–24. doi: 10.1145/3317572.

J. Yan, S. Bi, L. Huang, Y.-J. A. Zhang, Deep reinforcement learning based offloading for mobile edge computing with general task graph, IEEE International Conference on Communications (ICC) (2020) 1–7doi:10.1109/ icc40277. 2020.9148846.

D. K, P. A, A. S, M. T, A fast and elitist multiobjective genetic algorithm: Nsga-ii, IEEE Transactions on Evolutionary Computation 6 (2002) 182– 197. doi:10.1109/4235.996017.

Z. Qingfu, L. Hui, Moea/d: a multiobjective evolutionary algorithm based on decomposition, IEEE Transactions on Evolutionary Computation 11 (2007) 712–731. doi:10. 1109/ TEVC. 2007.892759..

D. K, J. H, An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: Solving problems with box constraints, IEEE Transactions on Evolutionary Computation 18 (2014) 577–601. doi:10.1109/TEVC.2013.228153.

O. Schuetze, X. Esquivel, Adriana, C. A. C. Coello, Some comments on gd and igd and relations to the hausdorff distance, Proceedings of the 12th Annual Conference Comp on Genetic and Evolutionary Computationdoi: 10.1145/1830761.1830837.

G. Abhishek, O. Yew-Soon, F. Liang, T. K. Chen, Multiobjective multifactorial optimization in evolutionary multitasking, IEEE Transactions on 555 Cybernetics 47 (2017) 1652–1665. doi:10.1109/TCYB.2016.2554622.

B. K. Kumar, G. Abhishek, O. Yew-Son, T. P. Siew, Cognizant multitasking in multiobjective multifactorial evolution: Mo-mfea-ii, IEEE Transactions on Cybernetics 51 (2020) 1–13. doi: 10. 1109/TCYB.2020.2981733.

Downloads

Published

27-11-2023

Issue

Section

Articles

How to Cite

Hou, Y., Wang, Z., & Liu, X. (2023). An Adaptive Multitasking Evolutionary Computation Offloading Algorithm for Mobile Edge Computing. Frontiers in Computing and Intelligent Systems, 6(1), 28-36. https://doi.org/10.54097/fcis.v6i1.06