A comparative study on long and short carbon nanotubes-incorporated Polydimethylsiloxane nanocomposites

Authors

  • Lei Hua

DOI:

https://doi.org/10.54097/rb8tnx78

Keywords:

Long, short multiwalled carbon Nanotubes ;PDMS; aspect ratio; conductive properties; mechanical properties;thermal properties.

Abstract

In order to analyze the different aspect ratio carbon nanotubes on the mechanical, electrical and thermal properties of the Polydimethylsiloxane (PDMS), long multiwalled carbon Nanotubes (LC), short multiwalled carbon nanotubes (SC) were incorporated into PDMS by solution blending method, respectively. Filling 2.0 wt.% of LC, the volume resistance (Rv) and surface resistance (Rs) were dereased 2, 3 orders of magnitude as compared with LC-PDMS-01. When the LC was increased to 3 wt.%, Rs and Rv dereased beyond the lower measurement range.The modulus of the SC/PDMS and LC/PDMS composites gradually increased with the filler content increased, while the elongation at break of the SC/PDMS and LC/PDMS composites decreased with the filler content increased. The LC-PDMS-02 also shows the excellent mechanical properties with the higher modulus of 2.84 MPa and elongation at break of 157.85% than those of SC-PDMS-02. Both LC and SC could enhance the thermal stability of PDMS. Furthermore, in the range of 530ºC to 600ºC, the thermal stability of PDMS with LC is more stable than that of PDMS with SC. In this case, LC is more advantageous than SC due to its greater aspect ratio. Thus, LC with high aspect ratio has the potential of being reinforcing filler than SC.

Downloads

Download data is not yet available.

References

[1] T. Yan, Y. Wu , W.Yi , Z.Pan, Recent progress on fabrication of carbon nanotube-based flexible conductive networks for resistive-type strain sensors, Sensor. Actuat. A-Phys. 327( 2021)112755. DOI: https://doi.org/10.1016/j.sna.2021.112755

[2] P. Vinay Deep, R. Sravendra, Y. Hye Jin abs and et.al, Functionalization of carbon nanomaterials for advanced polymer nanocomposites: A comparison study between CNT and graphene, Prog. Polym. Sci. 67(2017) 1-47. DOI: https://doi.org/10.1016/j.progpolymsci.2016.12.010

[3] A. Nag, S. C. Mukhopadhyay, Fabrication and implementation of carbon nanotubes for piezoresistive sensing applications, Mater. Technol.7 (2022) 100416. DOI: https://doi.org/10.1016/j.jsamd.2021.100416

[4] J. Chen, J. Zheng, Q. Gao, J. Zhang, J. Zhang, O.M. Omisore, L. Wang, H. Li, Polydimethylsiloxane (PDMS)-based flexible resistive strain sensors for wearable applications, Appl. Sci. 8 (2018) 345. DOI: https://doi.org/10.3390/app8030345

[5] J. Meng , J. Song , X. Zhang , J. Wang , S. Li, A highly stretchable carbon nanotube/reduced graphene oxide/ poly (dimethylsiloxane) composite with high thermal conductivity as a flexible strain sensor, Compos. Commun.42 (2023) 101693. DOI: https://doi.org/10.1016/j.coco.2023.101693

[6] Y. He, X. Lu, D. Wu, and et. al, CNT/PDMS conductive foam-based piezoresistive sensors with low detection limits, excellent durability, and multifunctional sensing capability,Sensor. Actuat. A-Phys. 358(2023) 114408. DOI: https://doi.org/10.1016/j.sna.2023.114408

[7] W.Y. Wua, Z.P.Bianb, W. Wang and et.al, PDMS gold nanoparticle composite film-based silver enhanced colorimetric detection of cardiac troponin I, Sens.Actuators B. 147 (2010) 298-303. DOI: https://doi.org/10.1016/j.snb.2010.03.027

[8] P. Pandey, S. Vongphachanh, J. Yoon, B. Kim, C.J. Choi, J.I. Sohn, and et. al, Silver nanowire-network-film-coated soft substrates with wrinkled surfaces for use as stretchable surface enhanced Raman scattering sensors, J. Alloy. Compd. 859(2021)157862. DOI: https://doi.org/10.1016/j.jallcom.2020.157862

[9] T. Li, J. Li, A. Zhong, F. Han, R. Sun, C.P. Wong, F. Niu, G. Zhang, Y. Jin, A flexible strain sensor based on CNTs/PDMS microspheres for human motion detection, Sensor. Actuat. A-Phys. 306 (2020) 111959. DOI: https://doi.org/10.1016/j.sna.2020.111959

[10] B. Shin, S. Mondal, M. Lee, S. Kim, Y.-I. Huh, C. Nah, Flexible thermoplastic polyurethane carbon nanotube composites for electromagnetic interference shielding and thermal management, Chem. Eng. J. 418 (2021) 129282. DOI: https://doi.org/10.1016/j.cej.2021.129282

[11] J. Chen, Y. Zhu, W. Jiang, A stretchable and transparent strain sensor based on sandwich like PDMS/CNTs/PDMS composite containing an ultrathin conductive CNT layer, Compos. Sci. Technol.186 (2020)107938. DOI: https://doi.org/10.1016/j.compscitech.2019.107938

[12] I. Akhtar, S.H. Chang, Stretchable sensor made of MWCNT/ZnO nanohybrid particles in PDMS, Adv. Mater. Technol. 5 (2020) 2000229. DOI: https://doi.org/10.1002/admt.202000229

[13] M.N. Barshutina, S.O. Kirichenko, V.A. Wodolajsky and et.al, PDMS-CNT composite for soft bioelectronic neuronal implants,Compos. Part B-eng.247(2022) 110286. DOI: https://doi.org/10.1016/j.compositesb.2022.110286

[14] Y. Xia, T. Su, Z. Mi and et.al,Wearable electrochemical sensor based on bimetallic MOF coated CNT/PDMS film electrode via a dual-stamping method for real-time sweat glucose analysis, Analytica Chimica Acta.1278(2023)341754. DOI: https://doi.org/10.1016/j.aca.2023.341754

[15] J. Shi, L. Wang, Z. Dai, L. Zhao, M. Du, H. Li, Y. Fang, Multiscale hierarchical design of a flexible piezoresistive pressure sensor with high sensitivity and wide linearity range, Small. 14 (2018) 1-7. DOI: https://doi.org/10.1002/smll.201800819

[16] S.M. Lee, H.J. Byeon, B.H. Kim, J. Lee, J.Y. Jeong, J.H. Lee, J.H. Moon, C. Park, H. Choi, S.H. Lee, K.H. Lee, Flexible and implantable capacitive microelectrode for bio-potential acquisition, Biochip J. 11 (2017) 153-163. DOI: https://doi.org/10.1007/s13206-017-1304-y

[17] L. Wang, H. Peng, X. Wang, X. Chen, C. Yang, B. Yang, et al., PDMS/MWCNTbased tactile sensor array with coplanar electrodes for crosstalk suppression, Microsyst. Nanoeng.2 (2016) 1-8. DOI: https://doi.org/10.1038/micronano.2016.65

[18] L.Wang, W. Dou, J. Chena,and et.al.A CNT-PDMS wearable device for simultaneous measurement of wrist pulse pressure and cardiac electrical activity, Mat. Sci. Eng. C.117 (2020) 111345. DOI: https://doi.org/10.1016/j.msec.2020.111345

[19] M. Norkhairunnisa, A. Azizan, M. Mariatti, H. Ismail, L.C. Sim, Thermal stability and electrical behavior of polydimethylsiloxane nanocomposites with carbon nanotubes and carbon black fillers, J. Compos. Mater. 46 (2012) 903-910. DOI: https://doi.org/10.1177/0021998311412985

[20] O.N. Hur, J.H. Ha,S.H. Park,Strain-Sensing Properties of Multi-Walled Carbon Nanotube/ Polydimethylsiloxane Composites with Different Aspect Ratio and Filler Contents, Materials. 13(2020) 2431. DOI: https://doi.org/10.3390/ma13112431

[21] Y. Zheng, Y. Li, and et.al.The effect of filler dimensionality on the electromechanical performance of polydimethylsiloxane based conductive nanocomposites for flexible strain sensors, Compos. Sci. Technol. 139 (2017) 64-73. DOI: https://doi.org/10.1016/j.compscitech.2016.12.014

[22] P.L.Teh, M. Mariatti, A.N.R.Wagiman, K.S.Beh,Effect of curing agent on the properties of mineral silica filled epoxy composites, Polym. Compos. 29 (2008)27-36. DOI: https://doi.org/10.1002/pc.20345

[23] D.Bikiaris, A.Vassiliou, K. Chrissafis, K.M. Paraskevopoulos, A. Jannakoudakis, A. Docoslis, Effect of cidtreated multi wall carbon nanotubes on the mechanical permeability, thermal properties and thermo-oxidative stability of isotactic polypropylene, Poly. Degrad. Stab.93 (2008) 952-967. DOI: https://doi.org/10.1016/j.polymdegradstab.2008.01.033

[24] H.Ismail, P. Prabakash, M.N. Ahmad Fauzi and A.Abu Bakar, Morphological, thermal and tensile properties of halloysite nanotubes filled ethylene propylene diene monomer (EPDM) nanocomposites, Polym. Test. 27(2008) 841-850. DOI: https://doi.org/10.1016/j.polymertesting.2008.06.007

Downloads

Published

27-09-2024

How to Cite

Hua, L. (2024). A comparative study on long and short carbon nanotubes-incorporated Polydimethylsiloxane nanocomposites . Highlights in Science, Engineering and Technology, 117, 43-50. https://doi.org/10.54097/rb8tnx78