The Dynamic Evolution of Black Holes in General Relativity: Numerical Relativity Simulation
DOI:
https://doi.org/10.54097/baqxaf82Keywords:
Numerical Relativity; Black Hole Evolution; Gravitational Waves; General Relativity; Einstein Field Equations.Abstract
As the core of the star left behind by the supernova explosion continues to collapse, the immense pressure causes protons to absorb electrons and transform into electrically neutral neutrons. The core of the star eventually forms a dense neutron star about 10 kilometres across, much smaller than a city. Neutron stars resemble giant atomic nuclei and are much denser than any atomic material on Earth. A small cup of matter from a neutron star exceeds the total mass of everyone on Earth. If the mass of the star's core is large enough, it will continue to collapse beyond the Schwarzschild radius, eventually forming a black hole. The gravitational field of a black hole is so strong that neither matter nor electromagnetic waves (including visible light) can escape from it. The boundary of this inescapable region is called the event horizon. In our experiments, we used a high-performance computing cluster and numerical relativity simulation software to accurately solve Einstein's field equations and demonstrate that the peak amplitude of gravitational waves emitted by black holes during mergers can reach with a frequency of 300 Hz. This study provides important insights into the dynamic evolution of black holes and the emission of gravitational waves under various initial conditions.
Downloads
References
[1] Ni Y, Di Matteo T, Bird S, et al. The ASTRID simulation: the evolution of supermassive black holes[J]. Monthly Notices of the Royal Astronomical Society, 2022, 513(1): 670-692. DOI: https://doi.org/10.1093/mnras/stac351
[2] Torniamenti S, Rastello S, Mapelli M, et al. Dynamics of binary black holes in young star clusters: the impact of cluster mass and long-term evolution[J]. Monthly Notices of the Royal Astronomical Society, 2022, 517(2): 2953-2965. DOI: https://doi.org/10.1093/mnras/stac2841
[3] Chattopadhyay D, Hurley J, Stevenson S, et al. Dynamical double black holes and their host cluster properties[J]. Monthly Notices of the Royal Astronomical Society, 2022, 513(3): 4527-4555. DOI: https://doi.org/10.1093/mnras/stac1163
[4] Kamlah A W H, Spurzem R, Berczik P, et al. The impact of stellar evolution on rotating star clusters: the gravothermal-gravogyro catastrophe and the formation of a bar of black holes[J]. Monthly Notices of the Royal Astronomical Society, 2022, 516(3): 3266-3283. DOI: https://doi.org/10.1093/mnras/stac2281
[5] Li R, Lai D. Hydrodynamical evolution of black-hole binaries embedded in AGN discs[J]. Monthly Notices of the Royal Astronomical Society, 2022, 517(2): 1602-1624. DOI: https://doi.org/10.1093/mnras/stac2577
[6] Arca Sedda M, Mapelli M, Benacquista M, et al. Isolated and dynamical black hole mergers with B-POP: the role of star formation and dynamics, star cluster evolution, natal kicks, mass and spins, and hierarchical mergers[J]. Monthly Notices of the Royal Astronomical Society, 2023, 520(4): 5259-5282. DOI: https://doi.org/10.1093/mnras/stad331
[7] Izquierdo-Villalba D, Sesana A, Bonoli S, et al. Massive black hole evolution models confronting the n-Hz amplitude of the stochastic gravitational wave background[J]. Monthly Notices of the Royal Astronomical Society, 2022, 509(3): 3488-3503. DOI: https://doi.org/10.1093/mnras/stab3239
[8] Chen N, Ni Y, Tremmel M, et al. Dynamical friction modelling of massive black holes in cosmological simulations and effects on merger rate predictions[J]. Monthly Notices of the Royal Astronomical Society, 2022, 510(1): 531-550. DOI: https://doi.org/10.1093/mnras/stab3411
[9] Wang L, Tanikawa A, Fujii M S. The impact of primordial binary on the dynamical evolution of intermediate massive star clusters[J]. Monthly Notices of the Royal Astronomical Society, 2022, 509(4): 4713-4722. DOI: https://doi.org/10.1093/mnras/stab3255
[10] Wang D, Koussour M, Malik A, et al. Observational constraints on a logarithmic scalar field dark energy model and black hole mass evolution in the Universe[J]. The European Physical Journal C, 2023, 83(7): 1-14. DOI: https://doi.org/10.1140/epjc/s10052-023-11744-z
[11] Chanda A, Paul B C. Evolution of primordial black holes in f (Q) gravity with non-linear equation of state[J]. The European Physical Journal C, 2022, 82(7): 1-11. DOI: https://doi.org/10.1140/epjc/s10052-022-10579-4
[12] Gualandris A, Khan F M, Bortolas E, et al. Eccentricity evolution of massive black hole binaries from formation to coalescence[J]. Monthly Notices of the Royal Astronomical Society, 2022, 511(4): 4753-4765. DOI: https://doi.org/10.1093/mnras/stac241
[13] Mazzolari G, Bonetti M, Sesana A, et al. Extreme mass ratio inspirals triggered by massive black hole binaries: from relativistic dynamics to cosmological rates[J]. Monthly Notices of the Royal Astronomical Society, 2022, 516(2): 1959-1976. DOI: https://doi.org/10.1093/mnras/stac2255
[14] Mapelli M, Bouffanais Y, Santoliquido F, et al. The cosmic evolution of binary black holes in young, globular, and nuclear star clusters: rates, masses, spins, and mixing fractions[J]. Monthly Notices of the Royal Astronomical Society, 2022, 511(4): 5797-5816. DOI: https://doi.org/10.1093/mnras/stac422
[15] Costa G, Ballone A, Mapelli M, et al. Formation of black holes in the pair-instability mass gap: evolution of a post-collision star[J]. Monthly Notices of the Royal Astronomical Society, 2022, 516(1): 1072-1080. DOI: https://doi.org/10.1093/mnras/stac2222
Downloads
Published
Conference Proceedings Volume
Section
License
Copyright (c) 2024 Highlights in Science, Engineering and Technology

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.