Simultaneous Determination of Non-Uniform Soot Temperature and Volume Fraction from Flame Images
DOI:
https://doi.org/10.54097/hset.v31i.4810Keywords:
asymmetric flame, images processing, soot temperature, soot volume fraction, tomographic reconstruction.Abstract
This paper presents a method to invert the two-dimensional distribution of temperature and volume fraction of soot particles from flame images. The temperature field and particle volume concentration field of the non-uniform soot flame are simultaneously reconstructed using the wide response spectrum of the color CCD camera without adding monochromatic filters. The influences of the number of cameras, error of cameras position angle, measurement noise and different reconstruction algorithms on the measurement accuracy, are analyzed. The numerical simulation results demonstrate that the error of cameras position angle plays a crucial role in the reconstruction accuracy. In addition, increasing the number of cameras can improve the reconstruction results accuracy. Compared with the least squares algorithm, the Tikhonov regularization algorithm has a stronger anti-noise ability, which can resist 39 dB of noise. The conclusions obtained in this paper are helpful to guide the following experimental studies.
Downloads
References
Lee, T.; Bessler, W. G.; Kronemayer, H.; Schulz, C.; Jeffries, J. B., Quantitative temperature measurements in high-pressure flames with multiline NO-LIF thermometry. Applied Optics 2005, 44, (31), 6718-6728.
Chen, H. Y.; Hou, Y. Q.; Wang, X.; Pan, Z. X.; Xu, H. M., Characterization of In-Cylinder Combustion Temperature Based on a Flame-Image Processing Technique. Energies 2019, 12, (12).
Li, W. H.; Lou, C.; Sun, Y. P.; Zhou, H. C., Estimation of radiative properties and temperature distributions in coal-fired boiler furnaces by a portable image processing system. Exp. Therm. Fluid Sci. 2011, 35, (2), 416-421.
Loboda, E. L.; Reino, V. V.; Agafontsev, M. V., CHOICE OF A SPECTRAL RANGE FOR MEASURING TEMPERATURE FIELDS IN A FLAME AND RECORDING HIGH-TEMPERATURE OBJECTS SCREENED BY THE FLAME USING IR DIAGNOSTIC METHODS. Russian Physics Journal 2015, 58, (2), 278-282.
Salinas, C. T.; Pu, Y.; Lou, C.; dos Santos, D. B., Experiments for combustion temperature measurements in a sugarcane bagasse large-scale boiler furnace. Applied Thermal Engineering 2020, 175.
Xiao, X. D.; Choi, C. W.; Puri, I. K., Temperature measurements in steady two-dimensional partially premixed flames using laser interferometric holography. Combustion and Flame 2000, 120, (3), 318-332.
Doi, J.; Sato, S., Three-dimensional modeling of the instantaneous temperature distribution in a turbulent flame using a multidirectional interferometer. Optical Engineering 2007, 46, (1).
Wang, D. Z.; Zhuang, T. G., The measurement of 3-D asymmetric temperature field by using real time laser interferometric tomography. Optics and Lasers in Engineering 2001, 36, (3), 289-297.
Chen, H.; Du, Y.; Ding, Y.; Peng, Z., Non-uniform temperature measurement of flat flames using TDLAS. In Fourth Seminar on Novel Optoelectronic Detection Technology and Application, Guofan, J.; Guangjun, Z., Eds. 2018; Vol. 10697.
Cui, H.; Wang, F.; Huang, Q.; Yan, J.; Cen, K., Multiparameter Measurement in Ethylene Diffusion Flame Based on Time-Division Multiplexed Tunable Diode Laser Absorption Spectroscopy. Ieee Photonics Journal 2019, 11, (3).
Wang, Z.; Zhou, W.; Kamimoto, T.; Deguchi, Y.; Yan, J.; Yao, S.; Girase, K.; Jeon, M.-G.; Kidoguchi, Y.; Nada, Y., Two-Dimensional Temperature Measurement in a High-Temperature and High-Pressure Combustor Using Computed Tomography Tunable Diode Laser Absorption Spectroscopy (CT-TDLAS) with a Wide-Scanning Laser at 1335-1375 nm. Applied Spectroscopy 2020, 74, (2), 210-222.
Most, D.; Leipertz, A., Simultaneous two-dimensional flow velocity and gas temperature measurements by use of a combined particle image velocimetry and filtered Rayleigh scattering technique. Applied Optics 2001, 40, (30), 5379-5387.
Hoffman, D.; Munch, K. U.; Leipertz, A., Two-dimensional temperature determination in sooting flames by filtered Rayleigh scattering. Optics letters 1996, 21, (7), 525-7.
Feng, D.; Goldberg, B. M.; Shneider, M. N.; Miles, R. B., Optimization of Filtered Rayleigh Scattering for the Measurement of Pressure and Temperature. Combustion Science and Technology.
Bookey, H. T.; Bishop, A. I.; Barker, P. F., Narrow-band coherent Rayleigh scattering in a flame. Optics express 2006, 14, (8), 3461-3466.
Kampmann, S.; Leipertz, A.; Dobbeling, K.; Haumann, J.; Sattelmayer, T., Two-dimensional temperature measurements in a technical combustor with laser Rayleigh scattering. Applied optics 1993, 32, (30), 6167-72.
Ma, L.; Li, X.; Sanders, S. T.; Caswell, A. W.; Roy, S.; Plemmons, D. H.; Gord, J. R., 50-kHz-rate 2D imaging of temperature and H2O concentration at the exhaust plane of a J85 engine using hyperspectral tomography. Optics express 2013, 21, (1), 1152-62.
Liu, C.; Cao, Z.; Lin, Y.; Xu, L.; McCann, H., Online Cross-Sectional Monitoring of a Swirling Flame Using TDLAS Tomography. Ieee Transactions on Instrumentation and Measurement 2018, 67, (6), 1338-1348.
Liu, X. D.; Hao, X. J.; Xue, B.; Tai, B.; Zhou, H. C., Two-Dimensional Flame Temperature and Emissivity Distribution Measurement Based on Element Doping and Energy Spectrum Analysis. Ieee Access 2020, 8, 200863-200874.
Zapka, W.; Pokrowsky, P.; Tam, A. C., Noncontact optoacoustic monitoring of flame temperature profiles. Optics letters 1982, 7, (10), 477-9.
Liu, D.; Yan, J. H.; Wang, F.; Huang, Q. X.; Chi, Y.; Cen, K. F., Simultaneous experimental reconstruction of three-dimensional flame soot temperature and volume fraction distributions. Acta Physica Sinica 2011, 60, (6).
Liu, G. N.; Liu, D., Inverse radiation analysis for simultaneous reconstruction of temperature and volume fraction fields of soot and metal-oxide nanoparticles in a nanofluid fuel sooting flame. International Journal of Heat and Mass Transfer 2018, 118, 1080-1089.
Liu, D.; Huang, Q. X.; Wang, F.; Chi, Y.; Cen, K. F.; Yan, J. H., Simultaneous Measurement of Three-Dimensional Soot Temperature and Volume Fraction Fields in Axisymmetric or Asymmetric Small Unconfined Flames With CCD Cameras. Journal of Heat Transfer-Transactions of the Asme 2010, 132, (6).
Jiang, F.; Liu, S.; Liangi, S. Q.; Li, Z. H.; Wang, X. Y.; Lu, G., Visual Flame Monitoring System Based on Two-Color Method. Journal of Thermal Science 2009, 18, (3), 284-288.
Li, Z. H.; Liu, S.; Mu, H. P.; Jiang, F.; Guo, J. M., Calibration and Experimental Research of a Multiple-wavelength Flame Temperature Instrumentation System. Journal of Thermal Science 2004, 13, (4), 371-375.
Huang, Y.; Yan, Y., Transient two-dimensional temperature measurement of open flames by dual-spectral image analysis. Trans. Inst. Meas. Control 2000, 22, (5), 371-384.
Huang, Q. X.; Liu, D.; Wang, F.; Yan, J. H.; Chi, Y.; Cen, K. F., Study on three-dimensional flame temperature distribution reconstruction based on truncated singular value decomposition. Acta Physica Sinica 2007, 56, (11), 6742-6748.
Liu, D.; Wang, F.; Cen, K. F.; Yan, J. H.; Huang, Q. X.; Chi, Y., Noncontact temperature measurement by means of CCD cameras in a participating medium. Optics Letters 2008, 33, (5), 422-424.
Liu, L. H.; Tan, H. P., Inverse radiation problem in three-dimensional complicated geometric systems with opaque boundaries. Journal of Quantitative Spectroscopy & Radiative Transfer 2001, 68, (5), 559-573.
Liu, D.; Wang, F.; Yan, J. H.; Huang, Q. X.; Chi, Y.; Cen, K. F., Inverse radiation problem of temperature field in three-dimensional rectangular enclosure containing inhomogeneous, anisotropically scattering media. International Journal of Heat and Mass Transfer 2008, 51, (13-14), 3434-3441.
Rukolaine, S. A., Regularization of inverse boundary design radiative heat transfer problems. Journal of Quantitative Spectroscopy & Radiative Transfer 2007, 104, (1), 171-195.
Daun, K. J.; Howell, J. R., Inverse design methods for radiative transfer systems. Journal of Quantitative Spectroscopy and Radiative Transfer 2005, 93, (1), 43-60.
Qiu, S. R.; Lou, C.; Xu, D. D., A HYBRID METHOD FOR RECONSTRUCTING TEMPERATURE DISTRIBUTIONS IN A RADIANT ENCLOSURE. Numerical Heat Transfer Part a-Applications 2014, 66, (10), 1097-1111.
Zhou, H.-C.; Han, S.-D.; Sheng, F.; Zheng, C.-G., Visualization of three-dimensional temperature distributions in a large-scale furnace via regularized reconstruction from radiative energy images: numerical studies %J Journal of Quantitative Spectroscopy and Radiative Transfer. 2002, 72, (4).
Lou, C.; Zhou, H.-C., ASSESSMENT OF REGULARIZED RECONSTRUCTION OF THREE-DIMENSIONAL TEMPERATURE DISTRIBUTIONS IN LARGE-SCALE FURNACES. Numerical Heat Transfer Part B-Fundamentals 2008, 53, (6), 555-567.
Daun, K. J.; Thomson, K. A.; Liu, F.; Smallwood, G. J., Deconvolution of axisymmetric flame properties using Tikhonov regularization. Applied Optics 2006, 45, (19), 4638-4646.
Zhou, H.-C.; Lou, C.; Cheng, Q.; Jiang, Z.; He, J.; Huang, B.; Pei, Z.; Lu, C., Experimental investigations on visualization of three-dimensional temperature distributions in a large-scale pulverized-coal-fired boiler furnace %J Proceedings of the Combustion Institute. 2004, 30, (1).
Wei, C.; Schwarm, K. K.; Pineda, D. I.; Spearrin, R. M., Volumetric laser absorption imaging of temperature, CO and CO2 in laminar flames using 3D masked Tikhonov regularization. Combustion and Flame 2021, 224, 239-247.
Xie, Z. C.; Wang, F.; Yan, J. H.; Cen, K. F., Comparative studies of Tikhonov regularization and truncated singular value decomposition in the three-dimensional flame temperature field reconstruction. Acta Physica Sinica 2015, 64, (24).
Huang, Q. X.; Wang, F.; Liu, D.; Ma, Z. Y.; Yan, J. H.; Chi, Y.; Cen, K. F., Reconstruction of soot temperature and volume fraction profiles of an asymmetric flame using stereoscopic tomography. Combustion and Flame 2009, 156, (3), 565-573.
Wang, F.; Yan, J. H.; Cen, K. F.; Huang, Q. X.; Liu, D.; Chi, Y.; Ni, M. J., Simultaneous measurements of two-dimensional temperature and particle concentration distribution from the image of the pulverized-coal flame. Fuel 2010, 89, (1), 202-211.
Lou, C.; Zhou, H.-C., Decoupled reconstruction method for simultaneous estimation of temperatures and radiative properties in a one-dimensional, gray, participating medium. Numerical Heat Transfer Part B-Fundamentals 2007, 51, (3), 275-292.
Lou, C.; Zhou, H.-C.; Yu, P.-F.; Jiang, Z.-W., Measurements of the flame emissivity and radiative properties of particulate medium in pulverized-coal-fired boiler furnaces by image processing of visible radiation. Proceedings of the Combustion Institute 2007, 31, 2771-2778.
Lou, C.; Li, W. H.; Zhou, H. C.; Salinas, C. T., Experimental investigation on simultaneous measurement of temperature distributions and radiative properties in an oil-fired tunnel furnace by radiation analysis. International Journal of Heat and Mass Transfer 2011, 54, (1-3), 1-8.
Yan, W. J.; Lou, C., Two-dimensional distributions of temperature and soot volume fraction inversed from visible flame images. Exp. Therm. Fluid Sci. 2013, 50, 229-233.
Ufuah, E.; Bailey, C. G. In Flame Radiation Characteristics of Open Hydrocarbon Pool Fires, World Congress on Engineering (WCE 2011), Imperial Coll, London, UNITED KINGDOM, Jul 06-08, 2011; Imperial Coll, London, UNITED KINGDOM, 2011; pp 1952-1958.
Charalampopoulos, T. T.; Chang, H. J. C. S.; Technology, In Situ Optical Properties of Soot Particles in the Wavelength Range from 340 nm to 600 nm. 1988, 59, (4-6), 401-421.
Regińska, T., A Regularization Parameter in Discrete Ill-Posed Problems. 1996, 17, (3), 740-749.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.







